Численные методы. Ч.1. Исследование функций. Буслов В.А - 31 стр.

UptoLike

Составители: 

Рубрика: 

h
2
h
1
x
N
2
h
1
h
2
x
N
=
h
2
(∆
h
1
x
N
) = N(N 1)h
1
h
2
x
N2
+ . . . ,
p
01...N
=
const p
01...N+1
= 0
h
k
=
k
hh . . . h
| {z }
k
k!f
01...k
=
k
f
0
h
k
,
k
f
0
=
k
f(x)|
x=x
0
f
01
=
(f
1
f
0
)
(x
1
x
0
)
=
f
0
h
k 1
f
01...k
=
f
12...k
f
01...k1
x
k
x
0
=
1
(k1)!h
k1
(∆
k1
f
1
k1
f
0
)
kh
=
k
f
0
k!h
k
.
k!f
01...k
k
h
1
h
2
...k
k
f
0
h
1
h
2
...h
k
f(x) f(x) f(x+h)f(x)
∆(αf + βg) = αf + βg
k
(∆
l
f) =
k+l
f =
l
(∆
k
f)
d
dx
=
1
x
ln(1 + ∆) .
f = exp{h
d
dx
}f f ,
f
f(x + h) =
X
n=0
1
n!
µ
h
d
dx
n
f(x) = exp{h
d
dx
}f(x) .
d
dx
=
ln(1 + ∆)
h
=
1
h
µ
2
2
+
3
3
+ . . . +
(1)
n+1
n
n
+ . . .
. (3)
x
df
dx
'
f
h
=
f(x+h)f(x)
h
,
df
dx
'
1
h
µ
2
2
f =
1
h
µ
2f(x + h)
f(x + 2h)
2
3
2
f(x)
.
d
dx
f =
1
h
2
ln(1 + ∆)ln(1 + ∆)f .