Решение задач по теоретической механике. Ч.3. Динамика. Чеботарев А.С - 14 стр.

UptoLike

14
ɉɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ ɝɪɭɡɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ
ɫ
k
T 52.0
2
S
.
Ɂɚɞɚɱɚ ʋ 2. ɇɚɣɬɢ ɭɪɚɜɧɟɧɢɟ ɫɜɨɛɨɞɧɵɯ ɜɟɪɬɢɤɚɥɶɧɵɯ ɤɨɥɟɛɚɧɢɣ
ɫɭɞɧɚ ɜɟɫɨɦ Ɋ ɜ ɫɩɨɤɨɣɧɨɣ ɜɨɞɟ. ɉɥɨɳɚɞɶ ɟɝɨ ɫɟɱɟɧɢɹ ɧɚ ɭɪɨɜɧɟ ɫɜɨɛɨɞɧɨɣ
ɩɨɜɟɪɯɧɨɫɬɢ ɜɨɞɵ ɫɱɢɬɚɬɶ ɧɟ ɡɚɜɢɫɹɳɟɣ ɨɬ ɤɨɥɟɛɚɧɢɣ ɢ ɪɚɜɧɨɣ S. ȼ
ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɰɟɧɬɪɭ ɬɹɠɟɫɬɢ ɋ, ɧɚɯɨɞɢɜɲɟɦɭɫɹ ɜ ɩɨɥɨɠɟɧɢɢ
ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ, ɛɵɥɚ ɫɨɨɛɳɟɧɚ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ ɫɤɨɪɨɫɬɶ v
0
.
ȼɹɡɤɨɫɬɶɸ ɜɨɞɵ ɩɪɟɧɟɛɪɟɱɶ. ɍɞɟɥɶɧɵɣ ɜɟɫ ɜɨɞɵ ɪɚɜɟɧ Ȗ= 1 T/ɦ
3
.
Ɋɟɲɟɧɢɟ.
ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ;
ɬɨɱɤɚ Ɉɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜ ɩɨɥɨɠɟɧɢɢ
ɪɚɜɧɨɜɟɫɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ ɫɭɞɧɚ. ɉɪɢ
ɷɬɨɦ ɜɵɫɨɬɚ ɩɨɞɜɨɞɧɨɣ ɱɚɫɬɢ ɫɭɞɧɚ ɪɚɜɧɚ
d.
Ʉ ɫɭɞɧɭ ɩɪɢɥɨɠɟɧɵ: Ɋɜɟɫ ɜ ɰɟɧɬɪɟ
ɬɹɠɟɫɬɢ ɋ ɫɭɞɧɚ, R
ɫɬ
ɧɨɪɦɚɥɶɧɚɹ
ɫɬɚɬɢɱɟɫɤɚɹ ɪɟɚɤɰɢɹ ɜɨɞɵ ɜ ɰɟɧɬɪɟ
ɬɹɠɟɫɬɢ Ʉ ɨɛɴɟɦɚ ɜɨɞɵ, ɜɵɬɟɫɧɟɧɧɨɣ
ɫɭɞɧɨɦ.
Ɇɨɞɭɥɶ R
ɫɬ
ɪɚɜɟɧ ɜɟɫɭ ɨɛɴɟɦɚ V
ɜɨɞɵ, ɜɵɬɟɫɧɟɧɧɨɣ ɫɭɞɧɨɦ,
ɬ.ɟ.
dSVR
ɫɬ
J
J
, ɫɥɟɞɨɜɚɬɟɥɶɧɨ,
ɭɫɥɨɜɢɟ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɢɦɟɟɬ
ɜɢɞ
0 dSP
J
. (7)
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ
ɩɪɢ
0
,0:0 vxxt
. (8)
ɂɡ-ɡɚ ɧɚɥɢɱɢɹ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ v
0
ɫɭɞɧɨ ɧɚɱɢɧɚɟɬ ɞɜɢɝɚɬɶɫɹ
ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ. Ɉɛɴɟɦ ɜɨɞɵ, ɜɵɬɟɫɧɟɧɧɨɣ ɫɭɞɧɨɦ, ɪɚɜɟɧ
)( xdS
.Ɂɧɚɱɢɬ, ɩɪɨɟɤɰɢɹ ɧɚ ɨɫɶ ɯ ɧɨɪɦɚɥɶɧɨɣ ɪɟɚɤɰɢɢ R ɪɚɜɧɚ
)( xdSR
x
J
. (9)
ɋɨɫɬɚɜɢɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ ɜ
ɩɪɨɟɤɰɢɢ ɧɚ ɨɫɶ ɯ
xx
RPxm
.
Ɍɚɤ ɤɚɤ Ɋ=Ɋ
ɯ
, ɢɫɩɨɥɶɡɭɹ ɭɪɚɜɧɟɧɢɹ (1) ɢ (3), ɩɨɥɭɱɢɦ
Sxx
g
P
J
.
Ɂɚɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ ɜ ɤɚɧɨɧɢɱɟɫɤɨɦ ɜɢɞɟ:
0
2
xkx
, (10)
ɝɞɟ
k
P
Sg
J
ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ.
                                                                  2S
       ɉɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ ɝɪɭɡɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɟ T                 0.52 ɫ .
                                                                   k

     Ɂɚɞɚɱɚ ʋ 2. ɇɚɣɬɢ ɭɪɚɜɧɟɧɢɟ ɫɜɨɛɨɞɧɵɯ ɜɟɪɬɢɤɚɥɶɧɵɯ ɤɨɥɟɛɚɧɢɣ
ɫɭɞɧɚ ɜɟɫɨɦ Ɋ ɜ ɫɩɨɤɨɣɧɨɣ ɜɨɞɟ. ɉɥɨɳɚɞɶ ɟɝɨ ɫɟɱɟɧɢɹ ɧɚ ɭɪɨɜɧɟ ɫɜɨɛɨɞɧɨɣ
ɩɨɜɟɪɯɧɨɫɬɢ ɜɨɞɵ ɫɱɢɬɚɬɶ ɧɟ ɡɚɜɢɫɹɳɟɣ ɨɬ ɤɨɥɟɛɚɧɢɣ ɢ ɪɚɜɧɨɣ S. ȼ
ɧɚɱɚɥɶɧɵɣ ɦɨɦɟɧɬ ɰɟɧɬɪɭ ɬɹɠɟɫɬɢ ɋ, ɧɚɯɨɞɢɜɲɟɦɭɫɹ ɜ ɩɨɥɨɠɟɧɢɢ
ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ, ɛɵɥɚ ɫɨɨɛɳɟɧɚ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ ɫɤɨɪɨɫɬɶ v0.
ȼɹɡɤɨɫɬɶɸ ɜɨɞɵ ɩɪɟɧɟɛɪɟɱɶ. ɍɞɟɥɶɧɵɣ ɜɟɫ ɜɨɞɵ ɪɚɜɟɧ Ȗ= 1 T/ɦ3.
           Ɋɟɲɟɧɢɟ.
                                          ɇɚɩɪɚɜɢɦ ɨɫɶ ɯ ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ;
                                     ɬɨɱɤɚ Ɉ – ɧɚɱɚɥɨ ɨɬɫɱɟɬɚ ɜ ɩɨɥɨɠɟɧɢɢ
                                     ɪɚɜɧɨɜɟɫɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ ɫɭɞɧɚ. ɉɪɢ
                                     ɷɬɨɦ ɜɵɫɨɬɚ ɩɨɞɜɨɞɧɨɣ ɱɚɫɬɢ ɫɭɞɧɚ ɪɚɜɧɚ
                                     d.
                                          Ʉ ɫɭɞɧɭ ɩɪɢɥɨɠɟɧɵ: Ɋ – ɜɟɫ ɜ ɰɟɧɬɪɟ
                                     ɬɹɠɟɫɬɢ ɋ ɫɭɞɧɚ, Rɫɬ – ɧɨɪɦɚɥɶɧɚɹ
                                     ɫɬɚɬɢɱɟɫɤɚɹ ɪɟɚɤɰɢɹ ɜɨɞɵ ɜ ɰɟɧɬɪɟ
                                     ɬɹɠɟɫɬɢ Ʉ ɨɛɴɟɦɚ ɜɨɞɵ, ɜɵɬɟɫɧɟɧɧɨɣ
                                     ɫɭɞɧɨɦ.
                                          Ɇɨɞɭɥɶ Rɫɬ ɪɚɜɟɧ ɜɟɫɭ ɨɛɴɟɦɚ V
                                     ɜɨɞɵ,          ɜɵɬɟɫɧɟɧɧɨɣ          ɫɭɞɧɨɦ,
                                         R
                                     ɬ.ɟ. ɫɬ  J ˜ V  J ˜ S ˜ d , ɫɥɟɞɨɜɚɬɟɥɶɧɨ,
                                     ɭɫɥɨɜɢɟ ɫɬɚɬɢɱɟɫɤɨɝɨ ɪɚɜɧɨɜɟɫɢɹ ɢɦɟɟɬ
                                     ɜɢɞ
                                          P J S d 0.                        (7)
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ
                 ɩɪɢ t 0 : x 0, x v0 .                                      (8)
     ɂɡ-ɡɚ ɧɚɥɢɱɢɹ ɧɚɱɚɥɶɧɨɣ ɫɤɨɪɨɫɬɢ v0 ɫɭɞɧɨ ɧɚɱɢɧɚɟɬ ɞɜɢɝɚɬɶɫɹ
ɜɟɪɬɢɤɚɥɶɧɨ ɜɧɢɡ. Ɉɛɴɟɦ ɜɨɞɵ, ɜɵɬɟɫɧɟɧɧɨɣ ɫɭɞɧɨɦ, ɪɚɜɟɧ
S (d  x) .Ɂɧɚɱɢɬ, ɩɪɨɟɤɰɢɹ ɧɚ ɨɫɶ ɯ ɧɨɪɦɚɥɶɧɨɣ ɪɟɚɤɰɢɢ R ɪɚɜɧɚ
                         Rx J S (d  x) .                                   (9)
     ɋɨɫɬɚɜɢɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɰɟɧɬɪɚ ɬɹɠɟɫɬɢ ɋ ɜ
ɩɪɨɟɤɰɢɢ ɧɚ ɨɫɶ ɯ                   mx Px  Rx .
                                                                   P
     Ɍɚɤ ɤɚɤ Ɋ=Ɋɯ, ɢɫɩɨɥɶɡɭɹ ɭɪɚɜɧɟɧɢɹ (1) ɢ (3), ɩɨɥɭɱɢɦ            x J Sx .
                                                                   g
     Ɂɚɩɢɲɟɦ ɭɪɚɜɧɟɧɢɟ ɫɜɨɛɨɞɧɵɯ ɤɨɥɟɛɚɧɢɣ ɜ ɤɚɧɨɧɢɱɟɫɤɨɦ ɜɢɞɟ:
                          x  k 2 x 0 ,                                   (10)
            gJ S
     ɝɞɟ           k – ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ.
             P
                                      14