ВУЗ:
Составители:
Рубрика:
13
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ:
ɉɪɢ
00
0: , 0
P
txx xx
c
,
cDF
, ɝɞɟ F – ɫɢɥɚ ɭɩɪɭɝɨɫɬɢ,
(ɧɚɩɪɚɜɥɟɧɚ ɜɫɟɝɞɚ ɩɪɨɬɢɜɨɩɨɥɨɠɧɨ
ɫɦɟɳɟɧɢɸ); D – ɫɦɟɳɟɧɢɟ ɤɨɧɰɚ
ɩɪɭɠɢɧɵ ɢɡ ɧɟɧɚɩɪɹɠɟɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ,
ɬ. ɟ.
xdMMD
x
0
.
ɋɥɟɞɨɜɚɬɟɥɶɧɨ,
)( xdcF
x
. (1)
ɋɨɫɬɚɜɢɦ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ ɜ
ɩɪɨɟɤɰɢɢ ɧɚ ɨɫɶ ɯ:
x
FPxm
, (2)
ɢɫɩɨɥɶɡɭɹ (1), ɩɨɥɭɱɢɦ ɢɡ (2):
cxcdPx
g
P
. (3)
Ɂɚɩɢɲɟɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ (3) ɜ ɜɢɞɟ
0
2
xkx
, (4)
ɝɞɟ
P
cg
k
– ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ ɤɨɥɟɛɚɧɢɣ (ɭɝɥɨɜɚɹ ɱɚɫɬɨɬɚ).
Ɂɚɩɢɲɟɦ ɯɚɪɚɤɬɟɪɢɫɬɢɱɟɫɤɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ (4)
0
22
k
O
.
Ʉɨɪɧɢ ɭɪɚɜɧɟɧɢɹ
ki
r
2,1
O
.
Ɋɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (4) ɡɚɩɢɲɟɦ ɜ ɜɢɞɟ
)sin()cos(
21
ktcktcx
. (5)
Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɩɨɫɬɨɹɧɧɵɯ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ, ɜɵɱɢɫɥɢɦ ɫɤɨɪɨɫɬɶ
)cos()sin(
21
ktkcktkcx
. (6)
ɉɨɞɫɬɚɜɢɦ (5) ɢ (6) ɜ ɧɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ
00
0,0
P
txx xx
c
.
ɇɚɯɨɞɢɦ
0,
201
c
c
P
xɫ
.
ɍɪɚɜɧɟɧɢɹ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ ɩɪɢɦɟɬ ɜɢɞ
)cos()cos( t
P
cg
c
P
kt
c
P
x
.
ɉɨɞɫɬɚɜɥɹɟɦ ɱɢɫɥɟɧɧɵɟ ɡɧɚɱɟɧɢɹ
ɫɦ
c
P
ɫ
P
cg
k 8,6,12
1
.
Ⱥɦɩɥɢɬɭɞɚ ɤɨɥɟɛɚɧɢɣ a = 6,8 cɦ;
ɧɚɱɚɥɶɧɚɹ ɮɚɡɚ ɤɨɥɟɛɚɧɢɣ Į = –ʌ/2;
ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ k = 12 ɫ
-1
.
ɇɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ: P ɉɪɢ t 0 : x x0 , x x0 0 , c F cD , ɝɞɟ F – ɫɢɥɚ ɭɩɪɭɝɨɫɬɢ, (ɧɚɩɪɚɜɥɟɧɚ ɜɫɟɝɞɚ ɩɪɨɬɢɜɨɩɨɥɨɠɧɨ ɫɦɟɳɟɧɢɸ); D – ɫɦɟɳɟɧɢɟ ɤɨɧɰɚ ɩɪɭɠɢɧɵ ɢɡ ɧɟɧɚɩɪɹɠɟɧɧɨɝɨ ɫɨɫɬɨɹɧɢɹ, ɬ. ɟ. Dx MM 0 d x . ɋɥɟɞɨɜɚɬɟɥɶɧɨ, Fx c(d x) . (1) ɋɨɫɬɚɜɢɦ ɭɪɚɜɧɟɧɢɟ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ ɜ ɩɪɨɟɤɰɢɢ ɧɚ ɨɫɶ ɯ: mx P Fx , (2) ɢɫɩɨɥɶɡɭɹ (1), ɩɨɥɭɱɢɦ ɢɡ (2): P x P cd cx . (3) g Ɂɚɩɢɲɟɦ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɨɟ ɭɪɚɜɧɟɧɢɟ (3) ɜ ɜɢɞɟ x k 2 x 0 , (4) cg ɝɞɟ k – ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ ɤɨɥɟɛɚɧɢɣ (ɭɝɥɨɜɚɹ ɱɚɫɬɨɬɚ). P Ɂɚɩɢɲɟɦ ɯɚɪɚɤɬɟɪɢɫɬɢɱɟɫɤɨɟ ɭɪɚɜɧɟɧɢɟ ɞɥɹ (4) O2 k 2 0. Ʉɨɪɧɢ ɭɪɚɜɧɟɧɢɹ O1, 2 r ki . Ɋɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɹ (4) ɡɚɩɢɲɟɦ ɜ ɜɢɞɟ x c1 cos(kt ) c2 sin( kt ) . (5) Ⱦɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɩɨɫɬɨɹɧɧɵɯ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ, ɜɵɱɢɫɥɢɦ ɫɤɨɪɨɫɬɶ x c1k sin(kt ) c2 k cos(kt ) . (6) P ɉɨɞɫɬɚɜɢɦ (5) ɢ (6) ɜ ɧɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ t 0 x x0 , x x0 0 . c P ɇɚɯɨɞɢɦ ɫ1 x0 , c 2 0 . c P P cg ɍɪɚɜɧɟɧɢɹ ɞɜɢɠɟɧɢɹ ɝɪɭɡɚ ɩɪɢɦɟɬ ɜɢɞ x cos(kt ) cos( t) . c c P cg P ɉɨɞɫɬɚɜɥɹɟɦ ɱɢɫɥɟɧɧɵɟ ɡɧɚɱɟɧɢɹ k 12 ɫ 1 , 6,8 ɫɦ . P c Ⱥɦɩɥɢɬɭɞɚ ɤɨɥɟɛɚɧɢɣ a = 6,8 cɦ; ɧɚɱɚɥɶɧɚɹ ɮɚɡɚ ɤɨɥɟɛɚɧɢɣ Į = –ʌ/2; ɤɪɭɝɨɜɚɹ ɱɚɫɬɨɬɚ k = 12 ɫ-1. 13
Страницы
- « первая
- ‹ предыдущая
- …
- 11
- 12
- 13
- 14
- 15
- …
- следующая ›
- последняя »