ВУЗ:
Составители:
;
)xxx(
yxxx
b
N
u
u,ru,n
u,n
uu,r
N
u
u,nu,n
r,n,n
∑
∑
=
=
⋅⋅
⋅⋅⋅
=
1
2
13
2
1
1
32
132
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
∑
∑
=
=
⋅
⋅⋅
=
1
2
2
1
1
21
21
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
∑
∑
=
=
⋅
⋅⋅
=
1
2
3
1
1
31
31
;
)xx(
yxx
b
N
u
u,r
u,r
u
N
u
u,ru,r
r,r
∑
∑
=
=
⋅
⋅⋅
=
1
2
3
2
1
32
32
;
)xxx(
yxxx
b
N
u
u,ru,r
u,n
uu,r
N
u
u,ru,n
r,r,n
∑
∑
=
=
⋅⋅
⋅⋅⋅
=
1
2
32
1
3
1
21
321
;
)xxx(
yxxx
b
N
u
u,ru,r
u,n
uu,r
N
u
u,ru,n
r,r,n
∑
∑
=
=
⋅⋅
⋅⋅⋅
=
1
2
31
2
3
1
12
312
;
)xxx(
yxxx
b
N
u
u,ru,r
u,n
uu,r
N
u
u,ru,n
r,r,n
∑
∑
=
=
⋅⋅
⋅⋅⋅
=
1
2
21
3
2
1
13
213
;
)xxx(
yxxx
b
N
u
u,ru,r
u,r
uu,r
N
u
u,ru,r
r,r,r
∑
∑
=
=
⋅⋅
⋅⋅⋅
=
1
2
32
1
3
1
21
321
где
x
1n,u
= x
n
1,u
+v
1
; x
1r,u
=x
r
1,u
+a
1
⋅x
n
1,u
+c
1
x
2n,u
= x
n
2,u
+v
2
; x
2r,u
=x
r
2,u
+a
2
⋅x
n
2,u
+c
2
x
3n,u
= x
n
3,u
+v
3
; x
3r,u
=x
r
3,u
+a
3
⋅x
n
3,u
+c
3
.
N ∑ x2n ,u ⋅ x3n ,u ⋅ x1r ,u ⋅ yu u =1 b2 n ,3n ,1r = N ; ∑ ( x2n ,u ⋅ x3n ,u ⋅ x1r ,u ) 2 u =1 N N ∑ x1r ,u ⋅ x2r ,u ⋅ yu ∑ x1r ,u ⋅ x3r ,u ⋅ yu u =1 u =1 b1r ,2 r = N ; b1r ,3r = N ; ∑ ( x1r ,u ⋅ x2r ,u ) 2 ∑ ( x1r ,u ⋅ x3r ,u ) 2 u =1 u =1 N N ∑ x2r ,u ⋅ x3r ,u ⋅ yu ∑ x1n ,u ⋅ x2r ,u ⋅ x3r ,u ⋅ yu u =1 u =1 b2 r ,3r = N ; b1n ,2 r ,3r = N ; ∑ ( x2r ,u ⋅ x3r ,u )2 ∑ ( x1n ,u ⋅ x2r ,u ⋅ x3r ,u )2 u =1 u =1 N ∑ x2n ,u ⋅ x1r ,u ⋅ x3r ,u ⋅ yu u =1 b2 n ,1r ,3r = N ; ∑ ( x2n ,u ⋅ x1r ,u ⋅ x3r ,u ) 2 u =1 N ∑ x3n ,u ⋅ x1r ,u ⋅ x2r ,u ⋅ yu u =1 b3n ,1r ,2 r = N ; ∑ ( x3n ,u ⋅ x1r ,u ⋅ x2r ,u ) 2 u =1 N ∑ x1r ,u ⋅ x2r ,u ⋅ x3r ,u ⋅ yu u =1 b1r ,2 r ,3r = N ; ∑ ( x1r ,u ⋅ x2r ,u ⋅ x3r ,u ) 2 u =1 где x1n,u = xn1,u+v1; x1r,u=xr1,u+a1⋅xn1,u+c1 x2n,u = xn2,u+v2; x2r,u=xr2,u+a2⋅xn2,u+c2 x3n,u = xn3,u+v3; x3r,u=xr3,u+a3⋅xn3,u+c3.
Страницы
- « первая
- ‹ предыдущая
- …
- 25
- 26
- 27
- 28
- 29
- …
- следующая ›
- последняя »