ВУЗ:
Составители:
22
Таблица 6
План проведения экспериментов 4 ⋅ 5
№, u x
1,u
x
2,u
y
u
1
x
1,1
=x
1a
x
2,1
=x
2a
y
1
2
x
1,2
=x
1b
x
2,2
=x
2a
y
2
3
x
1,3
=x
1a
x
2,3
=x
2b
y
3
4 x
1,4
=x
1b
x
2,4
=x
2b
y
4
5
x
1,5
=x
1a
x
2,5
=x
2e
y
5
6
x
1,6
=x
1b
x
2,6
=x
2e
y
6
7
x
1,7
=x
1a
x
2,7
=x
2c
y
7
8
x
1,8
=x
1b
x
2,8
=x
2d
y
8
9
x
1,9
=x
1a
x
2,9
=x
2d
y
9
10
x
1,10
=x
1b
x
2,10
=x
2c
y
10
11
x
1,11
=x
1c
x
2,11
=x
2a
y
11
12
x
1,12
=x
1c
x
2,12
=x
2c
y
12
13
x
1,13
=x
1c
x
2,13
=x
2e
y
13
14
x
1,14
=x
1c
x
2,14
=x
2d
y
14
15
x
1,15
=x
1c
x
2,15
=x
2b
y
15
16
x
1,16
=x
1d
x
2,16
=x
2a
y
16
17
x
1,17
=x
1d
x
2,17
=x
2c
y
17
18
x
1,18
=x
1d
x
2,18
=x
2e
y
18
19
x
1,19
=x
1d
x
2,19
=x
2d
y
19
20
x
1,20
=x
1d
x
2,20
=x
2b
y
20
Для планов 3
⋅4, 3⋅5, 4⋅5 уравнения регрессии определяются исходя из
соответствующих зависимостей:
y = a
′
o
+ a
1n
⋅
x
1n
+ a
1r
⋅
x
1r
,
где a
′
o
= c
′
o
⋅
x
o
+ c
2n
⋅
x
2n
+ c
2r
⋅
x
2r
+ c
2s
⋅
x
2s
;
a
1n
= d
′
o
+ d
2n
⋅
x
2n
+ d
2r
⋅
x
2r
+ d
2s
⋅
x
2s ;
a
1r
= e
′
o
+ e
2n
⋅
x
2n
+ e
2r
⋅
x
2r
+ e
2s
⋅
x
2s
;
y = a
′
o
+ a
1n
⋅
x
1n
+ a
1r
⋅
x
1r
,
где a
′
o
= c
′
o
⋅
x
o
+ c
2n
⋅
x
2n
+ c
2r
⋅
x
2r
+ c
2s
⋅
x
2s
+ c
2w
⋅
x
2w
;
a
1n
= d
′
o
+ d
2n
⋅
x
2n
+ d
2r
⋅
x
2r
+ d
2s
⋅
x
2s
+ d
2w
⋅
x
2w
;
a
1r
= e
′
o
+ e
2n
⋅
x
2n
+ e
2r
⋅
x
2r
+ e
2s
⋅
x
2s
+ e
2w
⋅
x
2w
;
y = a
′
o
+ a
1n
⋅
x
1n
+ a
1r
⋅
x
1r
+ a
1s
⋅
x
1s
,
где a
′
o
= c
′
o
⋅
x
o
+ c
2n
⋅
x
2n
+ c
2r
⋅
x
2r
+ c
2s
⋅
x
2s
+ c
2w
⋅
x
2w
;
a
1n
= d
′
o
+ d
2n
⋅
x
2n
+ d
2r
⋅
x
2r
+ d
2s
⋅
x
2s
+ d
2w
⋅
x
2w
;
a
1r
= e
′
o
+ e
2n
⋅
x
2n
+ e
2r
⋅
x
2r
+ e
2s
⋅
x
2s
+ e
2w
⋅
x
2w
;
Таблица 6 План проведения экспериментов 4 ⋅ 5 №, u x1,u x2,u yu 1 x1,1=x1a x2,1=x2a y1 2 x1,2=x1b x2,2=x2a y2 3 x1,3=x1a x2,3=x2b y3 4 x1,4=x1b x2,4=x2b y4 5 x1,5=x1a x2,5=x2e y5 6 x1,6=x1b x2,6=x2e y6 7 x1,7=x1a x2,7=x2c y7 8 x1,8=x1b x2,8=x2d y8 9 x1,9=x1a x2,9=x2d y9 10 x1,10=x1b x2,10=x2c y10 11 x1,11=x1c x2,11=x2a y11 12 x1,12=x1c x2,12=x2c y12 13 x1,13=x1c x2,13=x2e y13 14 x1,14=x1c x2,14=x2d y14 15 x1,15=x1c x2,15=x2b y15 16 x1,16=x1d x2,16=x2a y16 17 x1,17=x1d x2,17=x2c y17 18 x1,18=x1d x2,18=x2e y18 19 x1,19=x1d x2,19=x2d y19 20 x1,20=x1d x2,20=x2b y20 Для планов 3⋅4, 3⋅5, 4⋅5 уравнения регрессии определяются исходя из соответствующих зависимостей: y = a′o + a1n ⋅ x1n + a1r ⋅ x1r , где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r + c2s ⋅ x2s ; a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r + d2s ⋅ x2s ; a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r + e2s ⋅ x2s ; y = a′o + a1n ⋅ x1n + a1r ⋅ x1r , где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r + c2s ⋅ x2s + c2w ⋅ x2w ; a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r + d2s ⋅ x2s + d2w ⋅ x2w ; a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r + e2s ⋅ x2s + e2w ⋅ x2w ; y = a′o + a1n ⋅ x1n + a1r ⋅ x1r + a1s ⋅ x1s , где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r + c2s ⋅ x2s + c2w ⋅ x2w ; a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r + d2s ⋅ x2s + d2w ⋅ x2w ; a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r + e2s ⋅ x2s + e2w ⋅ x2w ; 22
Страницы
- « первая
- ‹ предыдущая
- …
- 20
- 21
- 22
- 23
- 24
- …
- следующая ›
- последняя »