ВУЗ:
Составители:
68
Таблица 38 
План проведения экспериментов 4 ⋅ 5 
№, u  x
1,u
 x
2,u
 y
u
1 
x
1,1
=x
1a
 x
2,1
=x
2a
 y
1
2 
x
1,2
=x
1b
 x
2,2
=x
2a
 y
2
3 
x
1,3
=x
1a
 x
2,3
=x
2b
 y
3
4 
x
1,4
=x
1b
 x
2,4
=x
2b
 y
4
5 
x
1,5
=x
1a
 x
2,5
=x
2e
 y
5
6 
x
1,6
=x
1b
 x
2,6
=x
2e
 y
6
7 
x
1,7
=x
1a
 x
2,7
=x
2c
 y
7
8 
x
1,8
=x
1b
 x
2,8
=x
2d
 y
8
9 
x
1,9
=x
1a
 x
2,9
=x
2d
 y
9
10 
x
1,10
=x
1b
 x
2,10
=x
2c
 y
10
11 
x
1,11
=x
1c
 x
2,11
=x
2a
 y
11
12 
x
1,12
=x
1c
 x
2,12
=x
2c
 y
12
13 
x
1,13
=x
1c
 x
2,13
=x
2e
 y
13
14 
x
1,14
=x
1c
 x
2,14
=x
2d
 y
14
15 
x
1,15
=x
1c
 x
2,15
=x
2b
 y
15
16 
x
1,16
=x
1d
 x
2,16
=x
2a
 y
16
17 
x
1,17
=x
1d
 x
2,17
=x
2c
 y
17
18 
x
1,18
=x
1d
 x
2,18
=x
2e
 y
18
19 
x
1,19
=x
1d
 x
2,19
=x
2d
 y
19
20 
x
1,20
=x
1d
 x
2,20
=x
2b
 y
20
Для планов 3
⋅4, 3⋅5, 4⋅5 уравнения регрессии определяются исходя из 
соответствующих зависимостей: 
y = a
′
o
 + a
1n 
⋅
 x
1n
 + a
1r
⋅
 x
1r 
, 
где    a
′
o
 = c
′
o
⋅
 x
o
 + c
2n
⋅
 x
2n
 + c
2r
⋅
 x
2r
 + c
2s
⋅
 x
2s
 ; 
a
1n
 = d
′
o
 + d
2n
⋅
 x
2n
 + d
2r
⋅
 x
2r
 + d
2s
⋅
 x
2s ;
a
1r
 = e
′
o
   + e
2n
⋅
 x
2n
 + e
2r
⋅
 x
2r
 + e
2s
⋅
 x
2s
 ; 
y = a
′
o
 + a
1n 
⋅
 x
1n
 + a
1r
⋅
 x
1r 
, 
где    a
′
o
 = c
′
o
⋅
 x
o
 + c
2n
⋅
 x
2n
 + c
2r
⋅
 x
2r
 + c
2s
⋅
 x
2s
 + c
2w
⋅
 x
2w
 ;          
a
1n
 = d
′
o
 + d
2n
⋅
 x
2n
 + d
2r
⋅
 x
2r
 + d
2s
⋅
 x
2s
 + d
2w
⋅
 x
2w 
; 
a
1r
 = e
′
o
   + e
2n
⋅
 x
2n
 + e
2r
⋅
 x
2r
 + e
2s
⋅
 x
2s
 + e
2w
⋅
 x
2w 
 ; 
y = a
′
o
 + a
1n 
⋅
 x
1n
 + a
1r
⋅
 x
1r
 + a
1s
⋅
 x
1s 
, 
где    a
′
o
 = c
′
o
⋅
 x
o
 + c
2n
⋅
 x
2n
 + c
2r
⋅
 x
2r
 + c
2s
⋅
 x
2s
 + c
2w
⋅
 x
2w
 ;                   
a
1n
 = d
′
o
 + d
2n
⋅
 x
2n
 + d
2r
⋅
 x
2r
 + d
2s
⋅
 x
2s
 + d
2w
⋅
 x
2w 
; 
a
1r
 = e
′
o
 + e
2n
⋅
 x
2n
 + e
2r
⋅
 x
2r
 + e
2s
⋅
 x
2s
 + e
2w
⋅
 x
2w 
 ; 
                                                             Таблица 38
                  План проведения экспериментов 4 ⋅ 5
      №, u                x1,u              x2,u              yu
       1               x1,1=x1a          x2,1=x2a             y1
       2               x1,2=x1b          x2,2=x2a             y2
       3               x1,3=x1a          x2,3=x2b             y3
       4               x1,4=x1b          x2,4=x2b             y4
       5               x1,5=x1a          x2,5=x2e             y5
       6               x1,6=x1b          x2,6=x2e             y6
       7               x1,7=x1a          x2,7=x2c             y7
       8               x1,8=x1b          x2,8=x2d             y8
       9               x1,9=x1a          x2,9=x2d             y9
       10              x1,10=x1b         x2,10=x2c            y10
       11              x1,11=x1c         x2,11=x2a            y11
       12              x1,12=x1c         x2,12=x2c            y12
       13              x1,13=x1c         x2,13=x2e            y13
       14              x1,14=x1c         x2,14=x2d            y14
       15              x1,15=x1c         x2,15=x2b            y15
       16              x1,16=x1d         x2,16=x2a            y16
       17              x1,17=x1d         x2,17=x2c            y17
       18              x1,18=x1d         x2,18=x2e            y18
       19              x1,19=x1d         x2,19=x2d            y19
       20              x1,20=x1d         x2,20=x2b            y20
     Для планов 3⋅4, 3⋅5, 4⋅5 уравнения регрессии определяются исходя из
соответствующих зависимостей:
     y = a′o + a1n ⋅ x1n + a1r ⋅ x1r ,
где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r + c2s ⋅ x2s ;
     a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r + d2s ⋅ x2s ;
     a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r + e2s ⋅ x2s ;
     y = a′o + a1n ⋅ x1n + a1r ⋅ x1r ,
где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r + c2s ⋅ x2s + c2w ⋅ x2w ;
     a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r + d2s ⋅ x2s + d2w ⋅ x2w ;
     a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r + e2s ⋅ x2s + e2w ⋅ x2w ;
     y = a′o + a1n ⋅ x1n + a1r ⋅ x1r + a1s ⋅ x1s ,
где a′o = c′o ⋅ xo + c2n ⋅ x2n + c2r ⋅ x2r + c2s ⋅ x2s + c2w ⋅ x2w ;
     a1n = d′o + d2n ⋅ x2n + d2r ⋅ x2r + d2s ⋅ x2s + d2w ⋅ x2w ;
     a1r = e′o + e2n ⋅ x2n + e2r ⋅ x2r + e2s ⋅ x2s + e2w ⋅ x2w ;
                                   68
Страницы
- « первая
- ‹ предыдущая
- …
- 66
- 67
- 68
- 69
- 70
- …
- следующая ›
- последняя »
