ВУЗ:
Составители:
69
a
1s
 = f
′
o
  + f
2n
⋅
 x
2n
 + f
2r
⋅
 x
2r
 + f
2s
⋅
 x
2s
 + f
2w
⋅
 x
2w
 . 
После  подстановки,  перемножений  и  замены  коэффициентов  полу-
чаются следующие полиномы. 
Для плана 3 
⋅ 4 (табл. 36); 
y = b
′
o
⋅
 x
o
+ b
1n
⋅
 x
1n
 + b
2n
⋅
 x
2n
 + b
1n,2n
⋅
 x
1n
⋅
 x
2n
 + b
1r
⋅
 x
1r
 + b
2r
⋅
 x
2r
 +  
+ b
1n,2r
⋅
 x
1n
⋅
 x
2r
 + b
2n,1r
⋅
 x
2n
⋅
 x
1r
 + b
2r,1r
⋅
 x
1r
⋅
 x
2r
 + b
2s
⋅
 x
2s
 + 
+ b
2s,1n
⋅
 x
1n
⋅
 x
2s
 + b
2s,1r
⋅
 x
1r
 ⋅ x
2s
                                                                       (42) 
Для плана 3 
⋅ 5 (см. табл. 37); 
y = b
′
o
⋅
 x
o
+ b
1n
⋅
 x
1n
 + b
2n
⋅
 x
2n
 + b
1n,2n
⋅
 x
1n
⋅
 x
2n
 + b
1r
⋅
 x
1r
 + b
2r
⋅
 x
2r
 + 
+ b
1n,2r
⋅
 x
1n
⋅
 x
2r
 + b
2n,1r
⋅
 x
2n
⋅
 x
1r
 + b
2r,1r
⋅
 x
1r
⋅
 x
2r
 + b
2s
⋅
 x
2s
 + 
+ b
2s,1n
⋅
 x
1n
⋅
 x
2s
 + b
2s,1r
⋅
 x
1r
⋅
 x
2s
 + b
2w 
⋅
 x
2w 
+ b
2w,1n
⋅
 x
1n
⋅
 x
2w
 + 
+ b
2w,1r
⋅
 x
1r
⋅
 x
2w
                                                                                                (43) 
Для плана 4 ⋅ 5 (см. табл. 6); 
y = b
′
o
⋅
 x
o
+ b
1n
⋅
 x
1n
 + b
2n
⋅
 x
2n
 + b
1n,2n
⋅
 x
1n
⋅
 x
2n
 + b
1r
⋅
 x
1r
 + b
2r
⋅
 x
2r
 + 
+ b
1n,2r
⋅
 x
1n
⋅
 x
2r
 + b
2n,1r
⋅
 x
2n
⋅
 x
1r
 + b
2r,1r
⋅
 x
1r
⋅
 x
2r
 + b
1s
⋅
 x
1s
 + b
2s
⋅
 x
2s
 + 
+ b
2s,1n
⋅
 x
1n
⋅
 x
2s
 + b
1s,2n
⋅
 x
2n
⋅
 x
1s
 + b
1r,2s
⋅
 x
1r
⋅
 x
2s
 + b
2r,1s
⋅
 x
2r
⋅
 x
1s
 + 
+ b
2s1s
⋅
 x
2s
⋅
 x
1s
 + b
2w 
⋅
 x
2w
 + b
2w,1n
⋅
 x
1n
⋅
 x
2w
 + b
2w,1r
⋅
 x
1r
⋅
 x
2w
 + 
+ b
2w,1s
⋅
 x
1s
⋅
 x
2w
                                                                                                (44) 
В уравнениях регрессии (42) - (44) 
y - показатель (параметр) процес-
са; 
x
o
 = + 1; x
1n
 =x
n
1
 + v
1
 ; 
x
1r
 = x
r
1
 + a
1
⋅
 x
n
1
 + c
1
; x
1s
 =  x
s
1
 + d
1
⋅
 x
r
1
 + e
1
⋅
 x
n
1
 + f
1
; 
x
2n
 =x
n
2
 + v
2
 ; 
x
2r
 = x
r
2
 + a
2
⋅
 x
n
2
 + c
2
; x
2s
 =  x
s
2
 + d
2
⋅
 x
r
2
 + e
2
⋅
 x
n
2
 + f
2
; 
x
2w
 = x
w
2
 + g
2
⋅
 x
s
2
 + h
2
⋅
 x
r
2
 + k
2
⋅
 x
n
2
 + l
2
;
x
1
, x
2
 -1, 2-й  факторы (независимые  переменные);  n, r, s, w -
изменяемые числа показателей  степени факторов; 
v
1
, a
1
, c
1
, d
1
, e
1
, f
1
, - ко-
эффициенты ортогонации, определяемые  
при четырех уровнях 1-го фактора, 
m = 1, N = 4 по формулам (31) - 
(36); 
при трех уровнях 1-го фактора, 
m = 1, N = 3 по формулам (19)-(21);     
v
2
, a
2
, c
2
, d
2
, e
2
, f
2
, g
2
, h
2
, k
2
, l
2
 -коэффициенты ортогонализации, определяе-
мые при пяти уровнях 2-го фактора, 
m = 2, N = 5 по формулам (2)-(11); 
при четырех уровнях 2-го фактора, 
m = 2, N = 4 по формулам (31)-
(36); 
при трех уровнях 2-го фактора, 
m = 2, N = 3 по формулам (19)-(21); 
b
0
′
, b
1n
, b
2n
, b
1n,2n
, b
1r
, b
2r
, b
1n,2r
, b
2n,1r
, b
1r,2r
, b
1s
, b
2s
, b
1n,2s
, b
2n,1s
, b
1r,2s
, b
2r,1s
, 
b
1s,2s
, b
1w
, b
2w
, b
1n,2w
, b
2n,1w
, b
1r,2w
, b
22r,1w
, b
1s,2w
, b
2s,1w
 b
1w,2w
 - коэффициенты 
регресии.       
        a1s = f′o + f2n ⋅ x2n + f2r ⋅ x2r + f2s ⋅ x2s + f2w ⋅ x2w .
         После подстановки, перемножений и замены коэффициентов полу-
чаются следующие полиномы.
         Для плана 3 ⋅ 4 (табл. 36);
       ′
y = b o ⋅ xo + b1n ⋅ x1n + b2n ⋅ x2n + b1n,2n ⋅ x1n ⋅ x2n + b1r ⋅ x1r + b2r ⋅ x2r +
+ b1n,2r ⋅ x1n ⋅ x2r + b2n,1r ⋅ x2n ⋅ x1r + b2r,1r ⋅ x1r ⋅ x2r + b2s ⋅ x2s +
+ b2s,1n ⋅ x1n ⋅ x2s + b2s,1r ⋅ x1r ⋅ x2s                                                            (42)
         Для плана 3 ⋅ 5 (см. табл. 37);
       ′
y = b o ⋅ xo + b1n ⋅ x1n + b2n ⋅ x2n + b1n,2n ⋅ x1n ⋅ x2n + b1r ⋅ x1r + b2r ⋅ x2r +
+ b1n,2r ⋅ x1n ⋅ x2r + b2n,1r ⋅ x2n ⋅ x1r + b2r,1r ⋅ x1r ⋅ x2r + b2s ⋅ x2s +
+ b2s,1n ⋅ x1n ⋅ x2s + b2s,1r ⋅ x1r ⋅ x2s + b2w ⋅ x2w + b2w,1n ⋅ x1n ⋅ x2w +
+ b2w,1r ⋅ x1r ⋅ x2w                                                                                 (43)
         Для плана 4 ⋅ 5 (см. табл. 6);
       ′
y = b o ⋅ xo + b1n ⋅ x1n + b2n ⋅ x2n + b1n,2n ⋅ x1n ⋅ x2n + b1r ⋅ x1r + b2r ⋅ x2r +
+ b1n,2r ⋅ x1n ⋅ x2r + b2n,1r ⋅ x2n ⋅ x1r + b2r,1r ⋅ x1r ⋅ x2r + b1s ⋅ x1s + b2s ⋅ x2s +
+ b2s,1n ⋅ x1n ⋅ x2s + b1s,2n ⋅ x2n ⋅ x1s + b1r,2s ⋅ x1r ⋅ x2s + b2r,1s ⋅ x2r ⋅ x1s +
+ b2s1s ⋅ x2s ⋅ x1s + b2w ⋅ x2w + b2w,1n ⋅ x1n ⋅ x2w + b2w,1r ⋅ x1r ⋅ x2w +
+ b2w,1s ⋅ x1s ⋅ x2w                                                                                 (44)
         В уравнениях регрессии (42) - (44) y - показатель (параметр) процес-
са; xo = + 1; x1n =xn1 + v1 ;
              x1r = xr1 + a1⋅ xn1 + c1; x1s = xs1 + d1⋅ xr1 + e1⋅ xn1 + f1;
              x2n =xn2 + v2 ;
              x2r = xr2 + a2⋅ xn2 + c2; x2s = xs2 + d2⋅ xr2 + e2⋅ xn2 + f2;
              x2w = xw2 + g2 ⋅ xs2 + h2 ⋅ xr2 + k2 ⋅ xn2 + l2;
         x1, x2 -1, 2-й факторы (независимые переменные); n, r, s, w -
изменяемые числа показателей степени факторов; v1, a1, c1, d1, e1, f1, - ко-
эффициенты ортогонации, определяемые
         при четырех уровнях 1-го фактора, m = 1, N = 4 по формулам (31) -
(36);
         при трех уровнях 1-го фактора, m = 1, N = 3 по формулам (19)-(21);
v2, a2, c2, d2, e2, f2, g2, h2, k2, l2 -коэффициенты ортогонализации, определяе-
мые при пяти уровнях 2-го фактора, m = 2, N = 5 по формулам (2)-(11);
         при четырех уровнях 2-го фактора, m = 2, N = 4 по формулам (31)-
(36);
при трех уровнях 2-го фактора, m = 2, N = 3 по формулам (19)-(21);
         b0′, b1n, b2n, b1n,2n, b1r, b2r, b1n,2r, b2n,1r, b1r,2r, b1s, b2s, b1n,2s, b2n,1s, b1r,2s, b2r,1s,
b1s,2s, b1w, b2w, b1n,2w, b2n,1w, b1r,2w, b22r,1w, b1s,2w, b2s,1w b1w,2w - коэффициенты
регресии.
                                                    69
Страницы
- « первая
- ‹ предыдущая
- …
- 67
- 68
- 69
- 70
- 71
- …
- следующая ›
- последняя »
