ВУЗ:
Составители:
Рубрика:
()
−
=−=
−
992,7
573,4
332,0
029,0
ˆ
1
3222
XXSа
;
()
−
=−=
−
006,1
864,1
156,1
008,0
ˆ
1
3133
XXSа
.
7. Вычисление значений дискриминантных функций для каждого на-
блюдения выборочных совокупностей с помощью функции МУМНОЖ:
==
613,0
038,1
202,2
636,1
879,0
519,0
485,4
543,3
106,5
873,0
ˆ
111
aXu ;
==
913,7
708,10
824,11
973,6
233,8
ˆ
222
aXu
;
−
−
−
−
==
044,0
938,6
297,0
508,4
438,0
ˆ
222
aXu
.
8. Нахождение средних для полученных значений дискриминантных
функций:
089,2
ˆ
1
=u
,
130,9
ˆ
2
=u
,
427,2
ˆ
3
−=u
.
9. Расчет констант:
610,52/)130,9089,2(
1
=
+
=
с ,
(
)
351,32/427,2130,9
2
=
+
=
c ,
169,02/)427,2089,2(
3
−
=
+
=
c .
Таким образом , для каждого класса дискриминантные функции
имеют вид :
610,5591,0957,1551,0058,0
43211
−
+
+
−
=
xxxxf ;
351,3992,7573,4332,0029,0
43212
−
+
−
+
=
xxxxf ;
169,0006,1864,1156,1008,0
43213
+
−
+
+
=
xxxxf .
10. Определение, к какому классу можно отнести каждое из предпри -
ятий, данные по которым представлены в табл . 13.2.3.
0,029 0,008 1,156 а 2 = Sˆ−21 (X 2 − X 3 ) = а 3 = Sˆ3−1 (X1 − X 3 ) = 0, 332 ; . − 4,573 1,864 7 ,992 − 1,006 7. Вычисл ен ие зн а чен ий д искрим ин а н т н ыхф у н кций д л я ка ж д ого н а - б л ю д ен ия выб орочн ыхсовоку пн ост ей с пом ощ ь ю ф у н кции М У М Н О Ж : 0,873 5,106 3,543 8,233 − 0,438 4,485 0,519 6,973 − 4,508 uˆ1 = X1a1 = ; uˆ2 = X 2a 2 = 11,824 ; uˆ2 = X 2a 2 = − 0,297 . 0,879 10,708 − 6,938 1, 636 7,913 0,044 2,202 1,038 0,613 8. Н а хож д ен ие сред н их д л я пол у чен н ых зн а чен ий д искрим ин а н т н ых ф у н кций: uˆ1 = 2,089 , uˆ2 = 9,130 , uˆ3 = −2,427 . 9. Ра счет кон ст а н т : с 1 = ( 2,089 + 9,130) / 2 = 5,610 , c 2 = (9,130 + 2,427) / 2 = 3,351, c3 = ( 2,089 + 2,427) / 2 = −0,169 . Та ким об ра зом , д л я ка ж д ого кл а сса д искрим ин а н т н ые ф у н кции им ею т вид : f1 = 0,058 x1 − 0,551x2 + 1,957 x3 + 0,591x4 − 5,610 ; f 2 = 0,029 x1 + 0,332 x2 − 4,573x3 + 7,992 x4 − 3,351 ; f 3 = 0,008x1 + 1,156 x 2 + 1,864 x3 − 1,006 x 4 + 0,169 . 10. О пред ел ен ие, к ка ком у кл а ссу м ож н о от н ест и ка ж д ое изпред при- ят ий, д а н н ые по кот орым пред ст а вл ен ы в т а б л . 13.2.3.
Страницы
- « первая
- ‹ предыдущая
- …
- 103
- 104
- 105
- 106
- 107
- …
- следующая ›
- последняя »