Теория и практика математического моделирования в современном литейном производстве. Дурина Т.А. - 43 стр.

UptoLike

Составители: 

43
Понятностьалгоритм для исполнителя должен включать только те
команды, которые ему (исполнителю) доступны, которые входят в его
систему команд.
Завершаемость (конечность) — при корректно заданных исходных
данных алгоритм должен завершать работу и выдавать результат за конечное
число шагов. С другой стороны, вероятностный алгоритм может и никогда не
выдать результат, но вероятность этого
равна 0.
Массовость (универсальность). Алгоритм должен быть применим к
разным наборам исходных данных.
Результативностьзавершение алгоритма определёнными
результатами.
Алгоритм содержит ошибки, если приводит к получению
неправильных результатов, либо не даёт результатов вовсе.
Алгоритм не содержит ошибок, если он даёт правильные результаты
для любых допустимых исходных данных.
9.2. Пример алгоритма математического моделирования
1. Начало выполнения программы, ввод количества опытов по плану,
величин факторов на принятых уровнях и показателей степени в уравнении
регрессии. (РЕГРЕССИЯ [regression]зависимость среднего значения
какой-либо случайной величины от некоторой другой величины или
нескольких величин (в последнем случаеимеем множественную Р.).
Следовательно, при регрессионной связи одному и тому же значению x
величины
X (в отличие от функциональной связи) могут соответствовать
разные случайные значения величины Y. Распределение этих значений
называется условным распределением Y при данном X = x., т.е. Y – случайная
величина с определенным рассеянием.
Уравнение, связывающее эти величины, называется уравнением Р., а
соответствующий графиклинией Р. величины Y по X. Уравнение Р. (в
линейной форме) для одного фактора (“объясняющейпеременной):
     Понятность — алгоритм для исполнителя должен включать только те
команды, которые ему (исполнителю) доступны, которые входят в его
систему команд.
     Завершаемость (конечность) — при корректно заданных исходных
данных алгоритм должен завершать работу и выдавать результат за конечное
число шагов. С другой стороны, вероятностный алгоритм может и никогда не
выдать результат, но вероятность этого равна 0.
     Массовость (универсальность). Алгоритм должен быть применим к
разным наборам исходных данных.
     Результативность      —     завершение       алгоритма   определёнными
результатами.
     Алгоритм      содержит    ошибки,    если     приводит   к   получению
неправильных результатов, либо не даёт результатов вовсе.
     Алгоритм не содержит ошибок, если он даёт правильные результаты
для любых допустимых исходных данных.


             9.2. Пример алгоритма математического моделирования
1. Начало выполнения программы, ввод количества опытов по            плану,
величин факторов на принятых уровнях и показателей степени в уравнении
регрессии.    (РЕГРЕССИЯ [regression] — зависимость среднего значения
какой-либо случайной величины от некоторой другой величины или
нескольких величин (в последнем случае — имеем множественную Р.).
Следовательно, при регрессионной связи одному и тому же значению x
величины X (в отличие от функциональной связи) могут соответствовать
разные случайные значения величины Y. Распределение этих значений
называется условным распределением Y при данном X = x., т.е. Y – случайная
величина с определенным рассеянием.
Уравнение, связывающее эти величины, называется уравнением Р., а
соответствующий график — линией Р. величины Y по X. Уравнение Р. (в
линейной форме) для одного фактора (“объясняющей” переменной):
                                                                         43