Материаловедение и материалы электронных средств. Фролова Т.Н. - 23 стр.

UptoLike

Составители: 

23
()
Sfhx
C 2022
2/ εεπ= ,
(
)
341262
1
10910221085,8105028,6/10 =
C
x Ом,
(
)
441262
2
102,110231085,8105028,6/102 =
C
x
Ом.
Так как x
C1
<< R
1
и x
C2
<< R
2
, то U
1
/U
2
= x
C1
/ x
C2
.
Отсюда E
1
= 857 В·м
-1
, E
2
= 571 В·м
-1
.
2.11. Кубик из диэлектрика с ребром 0,06 м имеет удельное объемное
сопротивление 10
12
Ом·м и удельное поверхностное сопротивление 5·10
12
Ом.
На противоположные грани кубика нанесены электроды, к которым при-
ложено напряжение частотой 1 МГц. Определить модуль комплексной
проводимости кубика на этой частоте, если его диэлектрическая прони-
цаемость ε = 60.
2.12. При комнатной температуре тангенс угла диэлектрических по-
терь ультрафарфора tgδ
0
= 5·10
-4
, а при повышении температуры до 100 °С
он возрастает в два раза. Чему равен tgδ этого материала при температуре
200 °С? Во сколько раз увеличится активная мощность, выделяющаяся в
высокочастотном проходном изоляторе из этого материала, при изменении
температуры от 20 до 200 °С? Изменением диэлектрической проницаемо-
сти керамики пренебречь.
Решение
Потери в ультрафарфоре обусловлены
сквозной электропроводно-
стью, поэтому тангенс угла диэлектрических потерь увеличивается с тем-
пературой по экспоненциальному закону: tgδ
T
= tgδ
0
exp[α(T - T
0
)], где tgδ
0
значение при T
0
= 20 °С, αтемпературный коэффициент tgδ, который
может быть найден из выражения
3
100 0
ln tg ln tg
8,66 10
100 20
δ− δ
α= =
К
-1
.
Тогда tgδ
200
= 2,38·10
-3
.
Выделяющаяся в изоляторе активная мощность P
а
растет с темпера-
турой пропорционально tgδ. Поэтому
76,4
105
1038,2
tg
tg
4
3
0
200
а0
а200
=
=
δ
δ
=
P
P
.
2.13. На электроды куба из диэлектрического материала подано пе-
ременное напряжение U = 10 В частотой f = 1 МГц. Требуется:
а) определить тангенс угла диэлектрических потерь для этого мате-
риала, удельные потери p, коэффициент диэлектрических потерь ε″;