Современное программное обеспечение в пользовательском процессе: Сборник заданий по курсу. Глушко А.В - 34 стр.

UptoLike

Составители: 

Задание 6
1.Найти численное решение следующей начальной задачи для одного
уравнения первого порядка. Построить график решения и провести
проверку
88-1 ê4 Cos@1.25 x
3
y@xD
2
D+ y
£
@xD == Sin@1 + x
4
D,y@0D == 0.3<,
8x, -2.5, 2.5<, MaxSteps Ø 2000<
2. Найти численное решение с повышенной точностью следующей
начальной задачи для одного уравнения первого порядка. Построить
график решения и провести проверку
88-2 ê5 Cos@x
4
y@xD
3
D+ y
£
@xD == -Sin@1 - x
3
D,y@0D == 0.3<,
88x, -3.9, 3.9<, MaxSteps Ø 20000, AccuracyGoal ض,
PrecisionGoal Ø 18, WorkingPrecision Ø 18, Method Ø RungeKutta<<
3. Найти численное решение следующей начальной задачи для
нелинейной системы из трёх уравнений первого порядка. Построить график
р
ешения в фазовом пространстве с помощью команды ParametricPlot3D в
подпакете <<Graphics`ParametricPlot3D`. Провести проверку решения.
88-H2 + 0.165 Cos@tDLHy@tD+ z@tDL+ x
£
@tD == 0,
H1 - 0.1728 Sin@x@tDD
2
LHx@tD+ z@tDL+ y
£
@tD == 0,
H1 + 0.1272 t
2
Lx@tD- H1 + 0.1751 tLy@tD
2
+ z
£
@tD == 0,
x@0D == 1.1636, y@0D == 0.0735, z@0D == -2.1356<, 8t, 0, 4.52<,
MaxSteps Ø 15000, AccuracyGoal ض, PrecisionGoal Ø 15,
WorkingPrecision Ø 16, Method Ø RungeKutta<
4. Найти численное решение (с повышенной точностью) следующих
начальных задач для нелинейных систем из двух уравнений первого
порядка (1§j§5). Построить графики решений в фазовой плоскости и
z
ad ok7bis.nb 34
zad ok7bis.nb                                                              34




                                          Задание 6


      1.Найти численное решение следующей начальной задачи для одного
    уравнения первого порядка. Построить график решения и провести
    проверку

    88-1 ê 4 [email protected] x3 [email protected] D + y£ @xD == [email protected] + x4 D, [email protected] == 0.3<,
      8x, -2.5, 2.5<, MaxSteps Ø 2000<

     2. Найти численное решение с повышенной точностью следующей
    начальной задачи для одного уравнения первого порядка. Построить
    график решения и провести проверку


    88-2 ê 5 [email protected] [email protected] D + y£ @xD == [email protected] - x3 D, [email protected] == 0.3<,
      88x, -3.9, 3.9<, MaxSteps Ø 20000, AccuracyGoal Ø ¶,
        PrecisionGoal Ø 18, WorkingPrecision Ø 18, Method Ø RungeKutta<<


    3. Найти численное решение следующей начальной задачи для
    нелинейной системы из трёх уравнений первого порядка. Построить график
    решения в фазовом пространстве с помощью команды ParametricPlot3D в
    подпакете <