ВУЗ:
Составители:
объединённый график. Провести проверку первой из предложенных задач.
99x
£
@tD == -
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
0.75 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H3 + jL
2
y
{
z
z
z
EJ
1
ÅÅÅÅÅ
4
Cos@4y@tDD
2
+
3
ÅÅÅÅÅ
4
Sin@3x@tDD
2
N-
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
6j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + jL
2
y
{
z
z
z
Ex@tD
2
-
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
0.8 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H4 + jL
2
y
{
z
z
z
Ey@tD,
y
£
@tD == -
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
10 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H2 + jL
2
y
{
z
z
z
EJ
3
ÅÅÅÅÅ
4
CosA
x@tD
ÅÅÅÅÅÅÅÅÅÅÅÅ
6
E+
1
ÅÅÅÅÅ
4
SinA
y@tD
ÅÅÅÅÅÅÅÅÅÅÅÅ
5
EN-
1
ÅÅÅÅÅÅÅÅÅÅÅÅ
100
RoundA100
i
k
j
j
j
1 +
0.85 j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H5 + jL
2
y
{
z
z
z
Ey@tD,
x@0D == 1.02 - 0.001 j RoundA100
i
k
j
j
j
1 +
5j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + jL
2
y
{
z
z
z
E,
y@0D == -0.2 + 0.001 j RoundA100
i
k
j
j
j
1 +
5j
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
H1 + jL
2
y
{
z
z
z
E=,
8x, y<, 8t, -0.4425 + 0.05 j, 1.2725 - 0.1 j<,
MaxSteps Ø 1000 H19 + jL, AccuracyGoal ض, PrecisionGoal Ø 14 + j,
WorkingPrecision Ø 16, Method Ø RungeKutta,
PlotStyle Ø 8Thickness@0.002 + 0.0008 jD, Hue@0.9 - 0.18 jD<,
PlotPoints Ø 100 + 10 j=
5. Найти численное решение граничной задачи для уравнения второго
порядка с комплекснозначными данными. Построить объединённый график
абсолютной величины, вещественной и мнимой частей решения, а также
трёхмерный график решения с помощью команды ParametricPlot3D в
подпакете <<Graphics`ParametricPlot3D`. Провести проверку решения
z
ad ok7bis.nb 52
zad ok7bis.nb 52
объединённый график. Провести проверку первой из предложенных задач.
i 0.75 j y 1
99x£ @tD == - ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE J ÅÅÅÅÅ Cos@4 y@tDD2 + ÅÅÅÅÅ Sin@3 x@tDD2 N -
k H3 + jL { 4
1 3
100 4
i 6j y
ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE x@tD2 -
k H1 + jL {
1
100
i 0.8 j y
ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE y@tD,
k H4 + jL {
1
100
i 10 j y 3
y£ @tD == - ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE J ÅÅÅÅÅ CosA ÅÅÅÅÅÅÅÅÅÅÅÅ E + ÅÅÅÅÅ SinA ÅÅÅÅÅÅÅÅÅÅÅÅ EN -
k H2 + jL { 4
1 x@tD 1 y@tD
100 6 4 5
i 0.85 j y
ÅÅÅÅÅÅÅÅÅÅÅÅ RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE y@tD,
k H5 + jL {
1
100
i 5j y
x@0D == 1.02 - 0.001 j RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE,
k H1 + jL {
i 5j y
y@0D == -0.2 + 0.001 j RoundA100 jj1 + ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2ÅÅ zzE=,
k H1 + jL {
8x, y<, 8t, -0.4425 + 0.05 j, 1.2725 - 0.1 j<,
MaxSteps Ø 1000 H19 + jL, AccuracyGoal Ø ¶, PrecisionGoal Ø 14 + j,
PlotStyle Ø [email protected] + 0.0008 jD, [email protected] - 0.18 jD<,
WorkingPrecision Ø 16, Method Ø RungeKutta,
PlotPoints Ø 100 + 10 j=
5. Найти численное решение граничной задачи для уравнения второго
порядка с комплекснозначными данными. Построить объединённый график
абсолютной величины, вещественной и мнимой частей решения, а также
трёхмерный график решения с помощью команды ParametricPlot3D в
подпакете <Страницы
- « первая
- ‹ предыдущая
- …
- 50
- 51
- 52
- 53
- 54
- …
- следующая ›
- последняя »
