Основы гидравлики. Гусев В.П. - 40 стр.

UptoLike

Составители: 

40
х. Если подставить значение 𝐼
𝑥
в уравнение (2.21), то получим выражение
для нахождения координаты точки центра давления:
𝑙
д
= 𝑙
ц
+ 𝐼
ц
/𝑙
ц
𝑆. (2.22)
Таким образом, можно сделать вывод о том, что центр давления плоской
стенки располагается глубже еѐ центра тяжести на величину 𝐼
ц
/𝑙
ц
𝑆. Так
например, для вертикальной плоской стенки центр давления располагается
ниже поверхности уровня на расстоянии, равном 2/3 Н
ур
–высоты уровня
жидкости.
Полученные выше уравнения являются основой для осуществления
конструктивно-механических расчѐтов ѐмкостей для хранения жидкостей.
2.5.2. Гидростатические машины
Одной из наиболее распространѐнных конструкций гидростатических
машин является гидравлический пресс, который на практике применяется
для прессования и брикетирования различных порошкообразных материалов
в различных отраслях
промышленности, для подъѐма
грузов при помощи
гидроподъѐмников и т.д. В
обоснование принципа работы и
конструирования
гидравлического пресса
положены уравнение равновесия
Эйлера и закон Паскаля.
На рис.2.4. приведена схема
конструкции простейшего гидравлического пресса.
Гидравлический пресс состоит из двух различных по размеру цилиндров d и
D, при чѐм d D, соединѐнных между собой гидропроводом. В цилиндрах
установлены поршни 1 и 2. Рабочие объѐмы цилиндров заполнены
специальной гидравлической жидкостью, как правило, гидравлическим
маслом. Если к меньшему поршню 1 приложить внешнюю силу F
1
, то в
объѐме гидравлической жидкости под поршнем возникает давление Р. В
соответствии с уравнением Эйлера, давление в объѐме жидкости
распространяется равномерно и одинаково по всем направлениям. В
результате передачи давления под поршнем 2 будет развиваться точно такое
же давление Р. По закону Паскаля, если пренебречь разностью уровней
поршней (Z
0
Z), то величина сил давления на поршни F
1
и F
2
будут связаны
между собой следующим образом: