Алгебра. Комплексные числа, алгебраические структуры. Илларионова О.Г - 22 стр.

UptoLike

Рубрика: 

2.8 2x + 7 = 5 × Z
11
2.9 2x + 1 = 5 × Z
6
2.10 (
73
21
)X + (
21
1 5
) = (
01
2 0
) × M
2
(Z)
2.11 (
21
11
)X + (
01
1 3
) = (
01
2 0
) × M
2
(Z)
2.12 4x + 3 = 5 × Z
7
2.13 (
12
34
)X + (
41
1 2
) = (
31
2 0
) × M
2
(R)
2.14 x
2
9x = 5 × Q
2.15 (
21
12
)X + (
10
11
) = (
10
05
) × M
2
(Z)
2.16 (2 +
p
(5))x 7 =
p
(5) × {a + b
p
(5)}, a, b Q
2.17 (2
p
(5))x + 7
p
(5) = 3 × {a + b
p
(5)}, a, b Z
2.18 2x + 10 = 5 × Z
11
2.19 2x + 3 = 4 × Z
6
2.20 (
73
21
)X + (
21
15
) = (
01
2 0
) × M
2
(Z)
2.21 (
21
11
)X + (
01
43
) = (
01
2 0
) × M
2
(Z)
2.22 3 2x = 2 × Z
5
2.23 (
12
34
)X + (
21
1 2
) = (
31
2 10
) × M
2
(R)
2.24 3x
2
7x = 5 × Q
2.25 (
21
12
)X + (
10
11
) = (
10
09
) × M
2
(Z)
2.26 (x
2
+ 1)t + 5t = (t 3)x × Q[x] ÇÄÅ tÎÅÉÚ×ÅÓÔÎÁÑ.
úÁÄÁÞÁ ½ 3.
õÓÔÁÎÏ×ÉÔØ, ÂÕÄÅÔ ÌÉ ÓÌÅÄÕÀÝÉÅ ÍÎÏÖÅÓÔ×Ï: 1) ÇÒÕÐÐÏÊ 2) ËÏÌØÃÏÍ 3) ÐÏ-
23
2.8    2x + 7 = 5 × Z11

2.9    2x + 1 = 5 × Z6

                 2−1      0−1
2.10    (73
         21)X + (1 5 ) = (2 0 ) × M2 (Z)

         2−1
2.11    (11  )X + (10−1     0−1
                     3 ) = (2 0 ) × M2 (Z)


2.12    4x + 3 = 5 × Z7

                 4−1      3−1
2.13    (12
         34)X + (1 2 ) = (2 0 ) × M2 (R)


2.14    x2 − 9x = 5 × Q

2.15    (21      10      10
         12)X + (11 ) = (05 ) × M2 (Z)
               p           p            p
2.16    (2 +    (5))x − 7 = (5) × {a + b (5)}, a, b ∈ Q
               p         p                p
2.17    (2 −    (5))x + 7 (5) = 3 × {a + b (5)}, a, b ∈ Z

2.18    2x + 10 = 5 × Z11

2.19    2x + 3 = 4 × Z6

                 2−1      0−1
2.20    (73
         21)X + (1−5 ) = (2 0 ) × M2 (Z)

         2−1       0−1
2.21    (11  )X + (43  ) = (20−1
                              0 ) × M2 (Z)


2.22    3 − 2x = 2 × Z5

               2−1      3−1
2.23 (12
      34 )X + (1 2 ) = (2 10 ) × M2 (R)


2.24 3x2 − 7x = 5 × Q

2.25    (21      10      10
         12)X + (11 ) = (09 ) × M2 (Z)


2.26 (x2 + 1)t + 5t = (t − 3)x × Q[x] ÇÄÅ t ÎÅÉÚ×ÅÓÔÎÁÑ.
úÁÄÁÞÁ ½ 3.
õÓÔÁÎÏ×ÉÔØ, ÂÕÄÅÔ ÌÉ ÓÌÅÄÕÀÝÉÅ ÍÎÏÖÅÓÔ×Ï: 1) ÇÒÕÐÐÏÊ 2) ËÏÌØÃÏÍ 3) ÐÏ-
                                 23