ВУЗ:
Рубрика:
28 §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .
ðÒÉÍÅÒ 45.
Z
dx
cos x sin
3
x
=
Z
dx
cos
4
x tg
3
x
=
=
Z
(1 + tg
2
x) tg
−3
x d tg x =
Z
t
−3
(1 + t) dt =
=
Z
(t
−3
+ t
−2
) dt = −
1
2 tg
2
x
−
1
tg x
+ C.
III. éÎÔÅÇÒÁÌÙ ×ÉÄÁ
Z
sin(ax + b) cos(cx + p) dx,
Z
sin(ax + b) sin(cx + p) dx,
Z
cos(ax + b) cos(cx + p) dx
ÕÐÒÏÝÁÀÔÓÑ ÎÁ ÏÓÎÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÔÏÖÄÅÓÔ×
sin α cos β =
1
2
(sin(α + β) + sin(α − β)),
sin α sin β =
1
2
(cos(α − β) − cos(α + β)),
cos α cos β =
1
2
(cos(α + β) + cos(α − β)).
ðÒÉÍÅÒ 46.
Z
sin(3x + 1) cos(2x + 3) dx =
1
2
Z
(sin(5x + 4)+
+ sin(x − 2)) dx =
1
2
Z
sin(5x + 4)
5
d(5x + 4)+
+
Z
sin(x − 2) d(x − 2)
= −
cos(5x + 4)
10
−
cos(x − 2)
2
+ C.
ëÒÏÍÅ ÔÏÇÏ, ÐÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÆÕÎËÃÉÊ ÍÏÖÎÏ
ÐÏÌØÚÏ×ÁÔØÓÑ ÆÏÒÍÕÌÁÍÉ üÊÌÅÒÁ
sin x =
1
2i
(e
ix
− e
−ix
), cos x =
1
2
(e
ix
+ e
−ix
).
28 §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . . ðÒÉÍÅÒ 45. dx dx Z Z = = cos x sin3 x cos4 x tg3 x Z Z 2 −3 = (1 + tg x) tg x d tg x = t−3 (1 + t) dt = 1 1 Z = (t−3 + t−2) dt = − − + C. 2 tg2 x tg x III. éÎÔÅÇÒÁÌÙ ×ÉÄÁ Z sin(ax + b) cos(cx + p) dx, Z sin(ax + b) sin(cx + p) dx, Z cos(ax + b) cos(cx + p) dx ÕÐÒÏÝÁÀÔÓÑ ÎÁ ÏÓÎÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÔÏÖÄÅÓÔ× 1 sin α cos β = (sin(α + β) + sin(α − β)), 2 1 sin α sin β = (cos(α − β) − cos(α + β)), 2 1 cos α cos β = (cos(α + β) + cos(α − β)). 2 ðÒÉÍÅÒ 46. 1 Z Z sin(3x + 1) cos(2x + 3) dx = (sin(5x + 4)+ 2 Z 1 sin(5x + 4) + sin(x − 2)) dx = d(5x + 4)+ 2 5 cos(5x + 4) cos(x − 2) Z + sin(x − 2) d(x − 2) = − − + C. 10 2 ëÒÏÍÅ ÔÏÇÏ, ÐÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÆÕÎËÃÉÊ ÍÏÖÎÏ ÐÏÌØÚÏ×ÁÔØÓÑ ÆÏÒÍÕÌÁÍÉ üÊÌÅÒÁ 1 ix 1 ix sin x = (e − e−ix ), cos x = (e + e−ix ). 2i 2
Страницы
- « первая
- ‹ предыдущая
- …
- 26
- 27
- 28
- 29
- 30
- …
- следующая ›
- последняя »