Интегральное исчисление функции одной переменной. - 28 стр.

UptoLike

28 §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .
ðÒÉÍÅÒ 45.
Z
dx
cos x sin
3
x
=
Z
dx
cos
4
x tg
3
x
=
=
Z
(1 + tg
2
x) tg
3
x d tg x =
Z
t
3
(1 + t) dt =
=
Z
(t
3
+ t
2
) dt =
1
2 tg
2
x
1
tg x
+ C.
III. éÎÔÅÇÒÁÌÙ ×ÉÄÁ
Z
sin(ax + b) cos(cx + p) dx,
Z
sin(ax + b) sin(cx + p) dx,
Z
cos(ax + b) cos(cx + p) dx
ÕÐÒÏÝÁÀÔÓÑ ÎÁ ÏÓÎÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÔÏÖÄÅÓÔ×
sin α cos β =
1
2
(sin(α + β) + sin(α β)),
sin α sin β =
1
2
(cos(α β) cos(α + β)),
cos α cos β =
1
2
(cos(α + β) + cos(α β)).
ðÒÉÍÅÒ 46.
Z
sin(3x + 1) cos(2x + 3) dx =
1
2
Z
(sin(5x + 4)+
+ sin(x 2)) dx =
1
2
Z
sin(5x + 4)
5
d(5x + 4)+
+
Z
sin(x 2) d(x 2)
=
cos(5x + 4)
10
cos(x 2)
2
+ C.
ëÒÏÍÅ ÔÏÇÏ, ÐÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÆÕÎËÃÉÊ ÍÏÖÎÏ
ÐÏÌØÚÏ×ÁÔØÓÑ ÆÏÒÍÕÌÁÍÉ üÊÌÅÒÁ
sin x =
1
2i
(e
ix
e
ix
), cos x =
1
2
(e
ix
+ e
ix
).
28                                                    §1. îÅÏÐÒÅÄÅÌÅÎÎÙÊ ÉÎÔÅÇÒÁÌ. . .

     ðÒÉÍÅÒ 45.

          dx                   dx
 Z                     Z
                   =                    =
      cos x sin3 x         cos4 x tg3 x
                       Z                                 Z
                                   2       −3
                 =         (1 + tg x) tg        x d tg x = t−3 (1 + t) dt =
                                                                         1     1
                                                  Z
                                                = (t−3 + t−2) dt = −         −     + C.
                                                                      2 tg2 x tg x

     III. éÎÔÅÇÒÁÌÙ ×ÉÄÁ
                               Z
                                   sin(ax + b) cos(cx + p) dx,
                               Z
                                   sin(ax + b) sin(cx + p) dx,
                               Z
                                   cos(ax + b) cos(cx + p) dx

ÕÐÒÏÝÁÀÔÓÑ ÎÁ ÏÓÎÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÔÏÖÄÅÓÔ×
                                     1
                       sin α cos β =   (sin(α + β) + sin(α − β)),
                                     2
                                     1
                        sin α sin β = (cos(α − β) − cos(α + β)),
                                     2
                                     1
                       cos α cos β = (cos(α + β) + cos(α − β)).
                                     2
     ðÒÉÍÅÒ 46.

                                   1
 Z                                          Z
      sin(3x + 1) cos(2x + 3) dx =     (sin(5x + 4)+
                                   2
                                      Z
                                    1      sin(5x + 4)
                 + sin(x − 2)) dx =                    d(5x + 4)+
                                    2           5
                                          
                                                  cos(5x + 4) cos(x − 2)
                    Z
                  + sin(x − 2) d(x − 2) = −                  −           + C.
                                                      10          2

  ëÒÏÍÅ ÔÏÇÏ, ÐÒÉ ÉÎÔÅÇÒÉÒÏ×ÁÎÉÉ ÔÒÉÇÏÎÏÍÅÔÒÉÞÅÓËÉÈ ÆÕÎËÃÉÊ ÍÏÖÎÏ
ÐÏÌØÚÏ×ÁÔØÓÑ ÆÏÒÍÕÌÁÍÉ üÊÌÅÒÁ
                              1 ix                            1 ix
                  sin x =        (e − e−ix ),       cos x =     (e + e−ix ).
                              2i                              2