Неопределенные интегралы. Желтухин В.С. - 7 стр.

UptoLike

Составители: 

Рубрика: 

Z
dx
p
a
2
x
2
=
1
a
Z
dx
q
1 (x/a)
2
= arcsin
x
a
+ C.
Z
(e
x
1)(e
2x
+ 1)
e
x
dx =
Z
(e
2x
e
x
+ 1 e
x
) dx =
=
1
2
e
2x
e
x
+ x + e
x
+ C.
Z
2x
2
3x + 1
x + 1
dx =
Z
(2x 5)(x + 1) + 6
x + 1
dx =
=
Z
µ
2x 5 +
6
x + 1
dx = x
2
5x + 6 ln |x + 1| + C .
1
x
2
a
2
=
1
(x a)(x + a)
=
1
2a
µ
1
x a
1
x + a
,
Z
dx
x
2
a
2
=
1
2a
µ
Z
1
x a
dx
Z
1
x + a
dx
=
1
2a
ln
¯
¯
¯
¯
x a
x + a
¯
¯
¯
¯
+ C.
1
(x + a)(x + b)
1
(x + a)(x + b)
=
(x + a) (x + b)
(x + a)(x + b)
·
1
a b
=
1
a b
µ
1
x + b
1
x + a
,
Z
dx
(x + a)(x + b)
=
1
a b
µ
Z
dx
x + b
Z
dx
x + a
=
1
a b
ln
¯
¯
¯
¯
x + b
x + a
¯
¯
¯
¯
+C.
         Z                   Z
                  dx     1             dx                       x
    2)       p         =         q                 = arcsin       + C. /
               a2 − x2   a                                      a
                                     1 − (x/a)2
         Ïðèìåðû íà âñå ïðàâèëà:

Ï ð è ì å ð 6. .
             Z                              Z
                 (ex − 1)(e2x + 1)
                                   dx =          (e2x − ex + 1 − e−x ) dx =
                        ex
                                                1 2x
                                        =         e − ex + x + e−x + C./
                                                2
Ï ð è ì å ð 7. .
                   Z                 Z
                   2x2 − 3x + 1         (2x − 5)(x + 1) + 6
                                dx =                         dx =
                       x + 1                   x +  1
           Z µ               ¶
                           6
         =     2x − 5 +         dx = x2 − 5x + 6 ln |x + 1| + C./
                         x+1
     Èíòåãðèðîâàíèå äðîáè ñî ñëîæíûì çíàìåíàòåëåì ÷àñòî îáëåã-
÷àåòñÿ ðàçëîæåíèåì åå íà ñóììó äðîáåé ñ áîëåå ïðîñòûìè çíàìåíà-
òåëÿìè.

Ï ð è ì å ð 8. . Òàê, íàïðèìåð,
                                                       µ           ¶
                    1            1         1                1   1
                         =               =                    −      ,
                 x2 − a2   (x − a)(x + a) 2a               x−a x+a
ïîýòîìó

Z                       µZ                  Z              ¶          ¯       ¯
       dx       1             1                   1               1 ¯¯ x − a ¯¯
             =                   dx −                dx        =   ln           + C. /
     x2 − a2   2a            x−a                 x+a             2a ¯ x + a ¯
                                       1
         Âîîáùå, äðîáü âèäà                     ðàçëàãàåòñÿ íà ñóììó äðî-
                                 (x + a)(x + b)
áåé:
                                                                    µ           ¶
      1          (x + a) − (x + b)   1   1                               1   1
               =                   ·   =                                   −      ,
(x + a)(x + b)    (x + a)(x + b) a − b a − b                            x+b x+a
ïîýòîìó

Ï ð è ì å ð 9. .
Z                                µZ                Z           ¶             ¯      ¯
           dx         1                 dx              dx            1      ¯x + b¯
                   =                       −                       =     ln ¯¯      ¯+C. /
     (x + a)(x + b) a − b              x+b             x+a           a−b       x + a¯

                                            7