Квантовая теория двойного и тройного деления атомных ядер. Кадменский С.Г - 12 стр.

UptoLike

12
0,2,4,...J , ɚ ɩɪɢ 0
K
S
ɩɨɥɨɫɚ ɨɬɪɢɰɚɬɟɥɶɧɨɣ ɱɟɬɧɨɫɬɢ ɫ 1,3,5,...J ,
ɪɚɫɩɨɥɨɠɟɧɧɚɹ ɩɨ ɷɧɟɪɝɢɢ ɩɪɢɦɟɪɧɨ ɧɚ 0,5–0,7 Ɇɷȼ ɜɵɲɟ ɩɟɪɜɨɣ ɩɨɥɨɫɵ.
Ȼɨɥɟɟ ɫɥɨɠɧɵɦ ɬɢɩɚɦ ɉȾɋ ɫɨɨɬɜɟɬɫɬɜɭɸɬ ɜɪɚɳɚɬɟɥɶɧɵɟ ɩɨɥɨɫɵ ɫ 0
K
z ,
ɧɚɯɨɞɹɳɢɟɫɹ ɟɳɟ ɜɵɲɟ ɩɨ ɷɧɟɪɝɢɢ (ɧɚ ɜɟɥɢɱɢɧɭ § 1 Ɇɷȼ), ɩɨ ɨɬɧɨɲɟɧɢɸ
ɤ ɩɨɥɨɫɟ ɫ
0
K
S
.
ɉɨɫɤɨɥɶɤɭ ɮɚɤɬɨɪɵ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɞɟɥɢɬɟɥɶɧɵɯ ɛɚɪɶɟɪɨɜ ɞɥɹ ɉȾɋ ɫ
ɨɬɥɢɱɚɸɳɢɦɢɫɹ ɡɧɚɱɟɧɢɹɦɢ
JK
S
ɨɤɚɡɵɜɚɸɬɫɹ ɪɚɡɥɢɱɧɵɦɢ, ɭɤɚɡɚɧɧɵɟ
ɫɨɫɬɨɹɧɢɹ ɪɚɛɨɬɚɸɬ ɤɚɤ ɮɢɥɶɬɪɵ, ɩɪɢɜɨɞɹɳɢɟ ɤ ɧɟɨɞɧɨɪɨɞɧɨɦɭ
ɪɚɫɩɪɟɞɟɥɟɧɢɸ ɦɨɞ ɞɟɥɟɧɢɹ ɩɨ
K
.
ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ, ɨɩɢɫɚɧɢɟ ɢɧɬɟɪɮɟɪɟɧɰɢɨɧɧɵɯ ɷɮɮɟɤɬɨɜ ɜ ɍɊɎ
ɞɟɥɟɧɢɹ ɬɪɟɛɭɟɬ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɤɜɚɧɬɨɜɨɦɟɯɚɧɢɱɟɫɤɢɯ ɩɨɧɹɬɢɣ ɜɨɥɧɨɜɵɯ
ɮɭɧɤɰɢɣ ɞɟɥɹɳɟɝɨɫɹ ɹɞɪɚ ɢ ɮɪɚɝɦɟɧɬɨɜ ɞɟɥɟɧɢɹ, ɞɟɥɢɬɟɥɶɧɵɯ ɲɢɪɢɧ ɢ
ɞɟɥɢɬɟɥɶɧɵɯ ɮɚɡ. Ʉɜɚɧɬɨɜɨɦɟɯɚɧɢɱɟɫɤɢɟ ɜɚɪɢɚɧɬɵ ɬɟɨɪɢɢ ɞɟɥɟɧɢɹ ɛɵɥɢ
ɪɚɫɫɦɨɬɪɟɧɵ ɜ ɪɹɞɟ ɪɚɛɨɬ, ɧɚɩɪɢɦɟɪ [10–13], ɝɞɟ ɜ ɪɚɦɤɚɯ R-ɦɚɬɪɢɱɧɨɣ
ɬɟɨɪɢɢ ɹɞɟɪɧɵɯ ɪɟɚɤɰɢɣ [14] ɛɵɥɢ ɩɨɫɬɪɨɟɧɵ ɮɨɪɦɭɥɵ ɞɥɹ ɨɩɢɫɚɧɢɹ
ɚɧɢɡɨɬɪɨɩɢɣ, Ɋ-ɧɟɱɟɬɧɵɯ,
Ɋ-ɱɟɬɧɵɯ ɢ Ɍ-ɧɟɱɟɬɧɵɯ ɚɫɢɦɦɟɬɪɢɣ ɍɊɎ
ɞɜɨɣɧɨɝɨ ɞɟɥɟɧɢɹ ɹɞɟɪ. Ɉɞɧɚɤɨ ɧɢɤɚɤɢɯ ɮɨɪɦɭɥ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ
ɞɟɥɢɬɟɥɶɧɵɯ ɲɢɪɢɧ ɢ ɞɟɥɢɬɟɥɶɧɵɯ ɮɚɡ ɜ ɷɬɢɯ ɪɚɛɨɬɚɯ ɧɟ ɜɜɨɞɢɥɨɫɶ, ɚ
ɭɤɚɡɚɧɧɵɟ ɜɟɥɢɱɢɧɵ ɪɚɫɫɦɚɬɪɢɜɚɥɢɫɶ ɤɚɤ ɮɟɧɨɦɟɧɨɥɨɝɢɱɟɫɤɢɟ
ɩɚɪɚɦɟɬɪɵ. ɗɬɨ ɩɪɢɜɟɥɨ ɤ ɫɟɪɶɟɡɧɵɦ ɬɪɭɞɧɨɫɬɹɦ, ɩɨɫɤɨɥɶɤɭ, ɟɫɥɢ
ɢɧɮɨɪɦɚɰɢɸ ɨ ɞɟɥɢɬɟɥɶɧɵɯ ɲɢɪɢɧɚɯ ɦɨɠɧɨ ɜ ɤɚɤɨɣ-ɬɨ ɮɨɪɦɟ ɩɨɥɭɱɢɬɶ
ɢɯ ɚɧɚɥɢɡɚ
ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɞɚɧɧɵɯ, ɬɨ ɮɟɧɨɦɟɧɨɥɨɝɢɱɟɫɤɚɹ
ɢɧɮɨɪɦɚɰɢɹ ɨ ɞɟɥɢɬɟɥɶɧɵɯ ɮɚɡɚɯ ɨɬɫɭɬɫɬɜɭɟɬ. ȼ ɪɚɛɨɬɚɯ [10, 13] ɩɪɢ
ɨɩɢɫɚɧɢɢ Ɋ-ɱɟɬɧɵɯ ɢ Ɋ-ɧɟɱɟɬɧɵɯ ɚɫɢɦɦɟɬɪɢɣ ɜ ɍɊɎ ɞɟɥɟɧɢɹ
ɢɫɩɨɥɶɡɨɜɚɥɫɹ ɨɛɨɛɳɟɧɧɵɣ ɜɚɪɢɚɧɬ ɮɨɪɦɭɥɵ
(4), ɭɱɢɬɵɜɚɸɳɢɣ
ɜɨɡɦɨɠɧɨɫɬɶ ɢɧɬɟɪɮɟɪɟɧɰɢɢ ɫɨɫɬɨɹɧɢɣ ɞɟɥɹɳɟɝɨɫɹ ɹɞɪɚ ɫ ɪɚɡɥɢɱɧɵɦɢ
ɫɩɢɧɚɦɢ ɢ ɱɟɬɧɨɫɬɹɦɢ. Ɉɞɧɚɤɨ, ɤɚɤ ɨɬɦɟɱɚɥɨɫɶ ɜɵɲɟ, ɢɫɩɨɥɶɡɨɜɚɧɧɨɟ ɢ ɜ
ɷɬɢɯ ɪɚɛɨɬɚɯ ɞɨɩɭɳɟɧɢɟ ɨ ɜɵɥɟɬɟ ɮɪɚɝɦɟɧɬɨɜ ɞɟɥɟɧɢɹ ɩɨ ɢɥɢ ɩɪɨɬɢɜ
ɧɚɩɪɚɜɥɟɧɢɹ ɨɫɢ ɫɢɦɦɟɬɪɢɢ ɞɟɥɹɳɟɝɨɫɹ ɹɞɪɚ ɢɦɟɟɬ ɩɪɢɛɥɢɠɟɧɧɵɣ
ɯɚɪɚɤɬɟɪ ɢ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɩɪɟɞɫɬɚɜɥɟɧɢɸ ɨ ɩɨɹɜɥɟɧɢɢ ɛɟɫɤɨɧɟɱɧɨ ɛɨɥɶɲɢɯ
ɡɧɚɱɟɧɢɣ ɨɬɧɨɫɢɬɟɥɶɧɵɯ ɨɪɛɢɬɚɥɶɧɵɯ ɦɨɦɟɧɬɨɜ ɮɪɚɝɦɟɧɬɨɜ ɞɟɥɟɧɢɹ. ɗɬɨ
ɩɪɢɜɨɞɢɬ ɤ ɢɝɧɨɪɢɪɨɜɚɧɢɸ ɡɚɤɨɧɚ ɫɨɯɪɚɧɟɧɢɹ ɩɨɥɧɨɝɨ ɫɩɢɧɚ ɞɟɥɹɳɟɝɨɫɹ
ɹɞɪɚ ɜ ɩɪɨɰɟɫɫɟ ɞɟɥɟɧɢɹ, ɩɨɫɤɨɥɶɤɭ ɤɚɤ ɫɩɢɧɵ ɨɛɪɚɡɭɸɳɢɯɫɹ ɮɪɚɝɦɟɧɬɨɜ,
ɬɚɤ ɢ ɢɯ ɨɬɧɨɫɢɬɟɥɶɧɵɟ ɨɪɛɢɬɚɥɶɧɵɟ ɦɨɦɟɧɬɵ ɞɨɥɠɧɵ ɢɦɟɬɶ ɤɨɧɟɱɧɵɟ
ɡɧɚɱɟɧɢɹ.
ȼ ɫɜɹɡɢ ɫ ɭɤɚɡɚɧɧɵɦɢ ɩɪɨɛɥɟɦɚɦɢ ɨɩɢɫɚɧɢɹ ɹɜɥɟɧɢɹ ɞɟɥɟɧɢɹ ɜ ɪɚɦɤɚɯ
ɬɪɚɞɢɰɢɨɧɧɨɣ ɬɟɨɪɢɢ ɞɟɥɟɧɢɹ ɫ ɭɱɟɬɨɦ R-ɦɚɬɪɢɱɧɵɯ ɤɜɚɧɬɨɜɨ-
ɦɟɯɚɧɢɱɟɫɤɢɯ ɩɨɞɯɨɞɨɜ, ɜɨɡɧɢɤɚɟɬ ɧɟɨɛɯɨɞɢɦɨɫɬɶ ɜ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɦ
ɤɜɚɧɬɨɜɨɦɟɯɚɧɢɱɟɫɤɨɦ
ɨɩɢɫɚɧɢɢ ɷɬɨɝɨ ɹɜɥɟɧɢɹ, ɤɨɬɨɪɨɟ,
ɢɫɩɨɥɶɡɭɹ
ɩɪɟɞɫɬɚɜɥɟɧɢɹ ɨ ɜɨɥɧɨɜɵɯ ɮɭɧɤɰɢɹɯ ɞɟɥɹɳɟɝɨɫɹ ɹɞɪɚ ɢ ɮɪɚɝɦɟɧɬɨɜ
ɞɟɥɟɧɢɹ, ɹɜɧɵɦ ɨɛɪɚɡɨɦ ɨɩɪɟɞɟɥɹɟɬ ɚɦɩɥɢɬɭɞɵ ɞɟɥɢɬɟɥɶɧɵɯ ɲɢɪɢɧ ɢ
J 0,2,4,... , ɚ ɩɪɢ K S 0 – ɩɨɥɨɫɚ ɨɬɪɢɰɚɬɟɥɶɧɨɣ ɱɟɬɧɨɫɬɢ ɫ J 1,3,5,... ,
ɪɚɫɩɨɥɨɠɟɧɧɚɹ ɩɨ ɷɧɟɪɝɢɢ ɩɪɢɦɟɪɧɨ ɧɚ 0,5–0,7 Ɇɷȼ ɜɵɲɟ ɩɟɪɜɨɣ ɩɨɥɨɫɵ.
Ȼɨɥɟɟ ɫɥɨɠɧɵɦ ɬɢɩɚɦ ɉȾɋ ɫɨɨɬɜɟɬɫɬɜɭɸɬ ɜɪɚɳɚɬɟɥɶɧɵɟ ɩɨɥɨɫɵ ɫ K z 0 ,
ɧɚɯɨɞɹɳɢɟɫɹ ɟɳɟ ɜɵɲɟ ɩɨ ɷɧɟɪɝɢɢ (ɧɚ ɜɟɥɢɱɢɧɭ § 1 Ɇɷȼ), ɩɨ ɨɬɧɨɲɟɧɢɸ
ɤ ɩɨɥɨɫɟ ɫ K S 0 .
   ɉɨɫɤɨɥɶɤɭ ɮɚɤɬɨɪɵ ɩɪɨɧɢɰɚɟɦɨɫɬɢ ɞɟɥɢɬɟɥɶɧɵɯ ɛɚɪɶɟɪɨɜ ɞɥɹ ɉȾɋ ɫ
ɨɬɥɢɱɚɸɳɢɦɢɫɹ ɡɧɚɱɟɧɢɹɦɢ J S K ɨɤɚɡɵɜɚɸɬɫɹ ɪɚɡɥɢɱɧɵɦɢ, ɭɤɚɡɚɧɧɵɟ
ɫɨɫɬɨɹɧɢɹ ɪɚɛɨɬɚɸɬ ɤɚɤ ɮɢɥɶɬɪɵ, ɩɪɢɜɨɞɹɳɢɟ ɤ ɧɟɨɞɧɨɪɨɞɧɨɦɭ
ɪɚɫɩɪɟɞɟɥɟɧɢɸ ɦɨɞ ɞɟɥɟɧɢɹ ɩɨ K .
    ȼ ɨɛɳɟɦ ɫɥɭɱɚɟ, ɨɩɢɫɚɧɢɟ ɢɧɬɟɪɮɟɪɟɧɰɢɨɧɧɵɯ ɷɮɮɟɤɬɨɜ ɜ ɍɊɎ
ɞɟɥɟɧɢɹ ɬɪɟɛɭɟɬ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɤɜɚɧɬɨɜɨɦɟɯɚɧɢɱɟɫɤɢɯ ɩɨɧɹɬɢɣ ɜɨɥɧɨɜɵɯ
ɮɭɧɤɰɢɣ ɞɟɥɹɳɟɝɨɫɹ ɹɞɪɚ ɢ ɮɪɚɝɦɟɧɬɨɜ ɞɟɥɟɧɢɹ, ɞɟɥɢɬɟɥɶɧɵɯ ɲɢɪɢɧ ɢ
ɞɟɥɢɬɟɥɶɧɵɯ ɮɚɡ. Ʉɜɚɧɬɨɜɨɦɟɯɚɧɢɱɟɫɤɢɟ ɜɚɪɢɚɧɬɵ ɬɟɨɪɢɢ ɞɟɥɟɧɢɹ ɛɵɥɢ
ɪɚɫɫɦɨɬɪɟɧɵ ɜ ɪɹɞɟ ɪɚɛɨɬ, ɧɚɩɪɢɦɟɪ [10–13], ɝɞɟ ɜ ɪɚɦɤɚɯ R-ɦɚɬɪɢɱɧɨɣ
ɬɟɨɪɢɢ ɹɞɟɪɧɵɯ ɪɟɚɤɰɢɣ [14] ɛɵɥɢ ɩɨɫɬɪɨɟɧɵ ɮɨɪɦɭɥɵ ɞɥɹ ɨɩɢɫɚɧɢɹ
ɚɧɢɡɨɬɪɨɩɢɣ, Ɋ-ɧɟɱɟɬɧɵɯ, Ɋ-ɱɟɬɧɵɯ ɢ Ɍ-ɧɟɱɟɬɧɵɯ ɚɫɢɦɦɟɬɪɢɣ ɍɊɎ
ɞɜɨɣɧɨɝɨ ɞɟɥɟɧɢɹ ɹɞɟɪ. Ɉɞɧɚɤɨ ɧɢɤɚɤɢɯ ɮɨɪɦɭɥ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ
ɞɟɥɢɬɟɥɶɧɵɯ ɲɢɪɢɧ ɢ ɞɟɥɢɬɟɥɶɧɵɯ ɮɚɡ ɜ ɷɬɢɯ ɪɚɛɨɬɚɯ ɧɟ ɜɜɨɞɢɥɨɫɶ, ɚ
ɭɤɚɡɚɧɧɵɟ      ɜɟɥɢɱɢɧɵ   ɪɚɫɫɦɚɬɪɢɜɚɥɢɫɶ    ɤɚɤ    ɮɟɧɨɦɟɧɨɥɨɝɢɱɟɫɤɢɟ
ɩɚɪɚɦɟɬɪɵ. ɗɬɨ ɩɪɢɜɟɥɨ ɤ ɫɟɪɶɟɡɧɵɦ ɬɪɭɞɧɨɫɬɹɦ, ɩɨɫɤɨɥɶɤɭ, ɟɫɥɢ
ɢɧɮɨɪɦɚɰɢɸ ɨ ɞɟɥɢɬɟɥɶɧɵɯ ɲɢɪɢɧɚɯ ɦɨɠɧɨ ɜ ɤɚɤɨɣ-ɬɨ ɮɨɪɦɟ ɩɨɥɭɱɢɬɶ
ɢɯ ɚɧɚɥɢɡɚ ɷɤɫɩɟɪɢɦɟɧɬɚɥɶɧɵɯ ɞɚɧɧɵɯ, ɬɨ ɮɟɧɨɦɟɧɨɥɨɝɢɱɟɫɤɚɹ
ɢɧɮɨɪɦɚɰɢɹ ɨ ɞɟɥɢɬɟɥɶɧɵɯ ɮɚɡɚɯ ɨɬɫɭɬɫɬɜɭɟɬ. ȼ ɪɚɛɨɬɚɯ [10, 13] ɩɪɢ
ɨɩɢɫɚɧɢɢ Ɋ-ɱɟɬɧɵɯ ɢ Ɋ-ɧɟɱɟɬɧɵɯ ɚɫɢɦɦɟɬɪɢɣ ɜ ɍɊɎ ɞɟɥɟɧɢɹ
ɢɫɩɨɥɶɡɨɜɚɥɫɹ ɨɛɨɛɳɟɧɧɵɣ ɜɚɪɢɚɧɬ ɮɨɪɦɭɥɵ (4), ɭɱɢɬɵɜɚɸɳɢɣ
ɜɨɡɦɨɠɧɨɫɬɶ ɢɧɬɟɪɮɟɪɟɧɰɢɢ ɫɨɫɬɨɹɧɢɣ ɞɟɥɹɳɟɝɨɫɹ ɹɞɪɚ ɫ ɪɚɡɥɢɱɧɵɦɢ
ɫɩɢɧɚɦɢ ɢ ɱɟɬɧɨɫɬɹɦɢ. Ɉɞɧɚɤɨ, ɤɚɤ ɨɬɦɟɱɚɥɨɫɶ ɜɵɲɟ, ɢɫɩɨɥɶɡɨɜɚɧɧɨɟ ɢ ɜ
ɷɬɢɯ ɪɚɛɨɬɚɯ ɞɨɩɭɳɟɧɢɟ ɨ ɜɵɥɟɬɟ ɮɪɚɝɦɟɧɬɨɜ ɞɟɥɟɧɢɹ ɩɨ ɢɥɢ ɩɪɨɬɢɜ
ɧɚɩɪɚɜɥɟɧɢɹ ɨɫɢ ɫɢɦɦɟɬɪɢɢ ɞɟɥɹɳɟɝɨɫɹ ɹɞɪɚ ɢɦɟɟɬ ɩɪɢɛɥɢɠɟɧɧɵɣ
ɯɚɪɚɤɬɟɪ ɢ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɩɪɟɞɫɬɚɜɥɟɧɢɸ ɨ ɩɨɹɜɥɟɧɢɢ ɛɟɫɤɨɧɟɱɧɨ ɛɨɥɶɲɢɯ
ɡɧɚɱɟɧɢɣ ɨɬɧɨɫɢɬɟɥɶɧɵɯ ɨɪɛɢɬɚɥɶɧɵɯ ɦɨɦɟɧɬɨɜ ɮɪɚɝɦɟɧɬɨɜ ɞɟɥɟɧɢɹ. ɗɬɨ
ɩɪɢɜɨɞɢɬ ɤ ɢɝɧɨɪɢɪɨɜɚɧɢɸ ɡɚɤɨɧɚ ɫɨɯɪɚɧɟɧɢɹ ɩɨɥɧɨɝɨ ɫɩɢɧɚ ɞɟɥɹɳɟɝɨɫɹ
ɹɞɪɚ ɜ ɩɪɨɰɟɫɫɟ ɞɟɥɟɧɢɹ, ɩɨɫɤɨɥɶɤɭ ɤɚɤ ɫɩɢɧɵ ɨɛɪɚɡɭɸɳɢɯɫɹ ɮɪɚɝɦɟɧɬɨɜ,
ɬɚɤ ɢ ɢɯ ɨɬɧɨɫɢɬɟɥɶɧɵɟ ɨɪɛɢɬɚɥɶɧɵɟ ɦɨɦɟɧɬɵ ɞɨɥɠɧɵ ɢɦɟɬɶ ɤɨɧɟɱɧɵɟ
ɡɧɚɱɟɧɢɹ.
    ȼ ɫɜɹɡɢ ɫ ɭɤɚɡɚɧɧɵɦɢ ɩɪɨɛɥɟɦɚɦɢ ɨɩɢɫɚɧɢɹ ɹɜɥɟɧɢɹ ɞɟɥɟɧɢɹ ɜ ɪɚɦɤɚɯ
ɬɪɚɞɢɰɢɨɧɧɨɣ ɬɟɨɪɢɢ ɞɟɥɟɧɢɹ ɫ ɭɱɟɬɨɦ R-ɦɚɬɪɢɱɧɵɯ ɤɜɚɧɬɨɜɨ-
ɦɟɯɚɧɢɱɟɫɤɢɯ ɩɨɞɯɨɞɨɜ, ɜɨɡɧɢɤɚɟɬ ɧɟɨɛɯɨɞɢɦɨɫɬɶ ɜ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɦ
ɤɜɚɧɬɨɜɨɦɟɯɚɧɢɱɟɫɤɨɦ ɨɩɢɫɚɧɢɢ ɷɬɨɝɨ ɹɜɥɟɧɢɹ, ɤɨɬɨɪɨɟ, ɢɫɩɨɥɶɡɭɹ
ɩɪɟɞɫɬɚɜɥɟɧɢɹ ɨ ɜɨɥɧɨɜɵɯ ɮɭɧɤɰɢɹɯ ɞɟɥɹɳɟɝɨɫɹ ɹɞɪɚ ɢ ɮɪɚɝɦɟɧɬɨɜ
ɞɟɥɟɧɢɹ, ɹɜɧɵɦ ɨɛɪɚɡɨɦ ɨɩɪɟɞɟɥɹɟɬ ɚɦɩɥɢɬɭɞɵ ɞɟɥɢɬɟɥɶɧɵɯ ɲɢɪɢɧ ɢ


                                    12