Физика фононов. Карпов С.В. - 17 стр.

UptoLike

Составители: 

1.2 Энергия решетки ионных кристаллов
Поскольку идеальный ионный кристалл состоит из чередующихся положительных
и отрицательных ионов, между которыми действуют электростатические (кулоновские)
силы, легко выяснить, насколько хороша подобная простая модель ионного кристалла.
Будем рассматривать кристалл типа
LiF или NaCl (ГЦК структура), в котором имеется N
ионов каждого сорта (
Na
+
и Cl
). Потенциал взаимодействия ионов i и j с зарядами e,
расположенных на расстоянии
R
ij
, равен:
ij
n
ij
ij
r
e
r
2
±+=
λ
ϕ
.
Здесь первый член (всегда положительный) учитывает короткодействующие силы
отталкиванияпараметры
λ
и n получают из эксперимента; второй членкулоновский
потенциал дальнодействияописывает как притяжение (знак –), так и отталкивание
(знак +). Энергия взаимодействия иона
i со всеми остальными ионами в решетке равна
ϕ
=
Σ
ϕ
ij
, где суммирование производится по всем ионам j; штрих
у суммы означает,
что суммирование происходит без включения члена с
i=j. Полная энергия кристалла
тогда
±==
ji
ij
n
ij
ijo
r
e
r
NNU
2
λ
ϕ
.
Для удобства суммирования, как и в случае молекулярного кристалла, вводят
безразмерное число
p
ij
, определяющее любое расстояние r
ij
в кристалле через
расстояние между ближайшими соседями
R:
r
ij
= p
ij
R .
Тогда полная энергия кристалла может быть записана:
=
=
±=
∑∑
≠≠
R
e
R
A
N
pR
e
pR
N
Rp
e
Rp
NU
n
jijiji
ij
n
ij
n
ij
nn
ij
o
2
22
11
α
λλλ
m
∑∑
≠≠
jiji
ij
n
ij
p
p
A
1
;
1 m
α
.
Величина
α
называется постоянной Маделунга и зависит лишь от структуры
кристалла. Для всех кристаллов одинаковой структуры она величина постоянная. Член