Изучение законов динамики материальной точки. Казачков В.Г - 9 стр.

UptoLike

Рубрика: 

9
2.3 Определить среднее значение ускорения
a
и абсолютную ошиб-
ку a по формулам:
2
2
t
h
a = , (11)
ε
= aa ,
где
22
4
+
=
t
t
h
h
ε
.
Принять h = 0.5 см.
2.4 Вычислить коэффициент трения скольжения
µ
между бруском и
наклонной плоскостью по формуле
()()
α
+α
=µ
cos
sin
1
2112
gm
mmammg
,
где
#
30
=
α
;
m
1
масса бруска;
m
2
масса платформы с добавочным грузом.
Массы всех грузов указаны на них.
2.5 Принять относительную ошибку измерения коэффициента тре-
ния равной относительной ошибке измерения ускорения, т.к. другие величи-
ны, входящие в формулу для
µ
, измерены с большей точностью. Вычислить
абсолютную ошибку
ε
µ
µ
= и записать результат в виде доверительного
интервала
µ
µ
µ
±= .
2.6 Положить на брусок три добавочных груза. Система должна дви-
гаться в ту же сторону, что и в предыдущем случае, в противном случае до-
бавить груз на платформу.
2.7 Вычислить результирующую силу
F
, приводящую грузы в дви-
жение по формуле:
()
α
µ
+α= cossin
12
gmgmF ,
     2.3   Определить среднее значение ускорения a и абсолютную ошиб-
ку ∆a по формулам:
                                               2h
                                          a=        ,                (11)
                                               t2
                                         ∆a = a ⋅ ε ,
                         2           2
                 ∆h   ∆t 
     где    ε =   + 4  .
                 h    t 
     Принять ∆h = 0.5 см.
     2.4   Вычислить коэффициент трения скольжения µ между бруском и
наклонной плоскостью по формуле


                             g (m2 − m1 sin α ) − a (m1 + m2 )
                        µ=                                     ,
                                       m1 g cos α

     где   α = 30 # ;
           m1 – масса бруска;
           m2 – масса платформы с добавочным грузом.
Массы всех грузов указаны на них.
     2.5   Принять относительную ошибку измерения коэффициента тре-
ния равной относительной ошибке измерения ускорения, т.к. другие величи-
ны, входящие в формулу для µ , измерены с большей точностью. Вычислить
абсолютную ошибку ∆µ = µ ⋅ ε и записать результат в виде доверительного
интервала µ = µ ± ∆µ .
     2.6   Положить на брусок три добавочных груза. Система должна дви-
гаться в ту же сторону, что и в предыдущем случае, в противном случае до-
бавить груз на платформу.
     2.7   Вычислить результирующую силу F , приводящую грузы в дви-
жение по формуле:
                         F = m 2 g − m1 g (sin α + µ cos α ) ,

                                                                       9