Задачи по квантовой механике. Часть 2. Корнев А.С. - 62 стр.

UptoLike

Составители: 

ξ G
ˆ
F
hG
k
|
ˆ
F |G
n
i = hG
k
|
ˆ
1
ˆ
F
ˆ
1 |G
n
i =
X
ξ ξ
0
hG
k
|ξ
0
ihξ
0
|
ˆ
F |ξihξ |G
n
i.
ˆ
F
G
hG
k
|
ˆ
F |G
n
i =
Z
Φ
G
k
(r)
ˆ
F Φ
G
n
(r) d
3
r,
Φ
G
n
(r) hr |G
n
i
ω
m
x = ξx
0
ξΦ
(osc)
n
(ξ)
x
mn
hm|x |ni = x
0
(
r
n
2
δ
m,n1
+
r
n + 1
2
δ
m,n+1
)
.
x
0
=
r
}
x
mn
hn 1|x |ni = x
0
r
n
2
hn + 1|x |ni = x
0
r
n + 1
2
                                                             ?
     M 6- ; *!# 6   +  ]-* 6 )a+  ;# !#6-  2 
      (
%+  - + "% EF ! 2 ),!#Q!# \;-E 9 Z 7 0 ? ? ^ ;  ^ - 2 ; 
8* T ξ ;#S!86- 2 " G ;# !#6- \c ;   F̂  * A
             hGk | F̂ |Gn i = hGk | 1̂F̂ 1̂ |Gn i =
                                                                 X
                                                                        hGk |ξ 0 ihξ 0 | F̂ |ξihξ |Gn i .
                                                                                                                     9Z 7 9 ?

       a - 2 ;   8SW>"%+  ;# !#6-  2 K B€< HJGME <[69] E=GIHJG ; 6
                                                                 ξ ξ0


 F̂ " G ;# !#6- Uc  %!#%6L9 Z 7 9 ? ;-%6*>!8-81c 5T!c$&(
 *-SA
                                                   Z
                               hG | F̂ |G i = Φ∗ (r)F̂ Φ (r) d3 r,
                                                                                                             9Z 7 ? ?
                                       k       n                 Gk             Gn

+                                7
f+(*,+ V G g G )
           ΦGn (r) ≡ hr |Gn i
                          < i F B G €> R  R&H >fF^B=:>[5 g G \             R > K 5fF2 E BDB G X  i==E GIHJG H < R \ MG E BD:=> 5fg GWHJG^G 5 c BU6 6lP9F G R < 5`:=%!#3;%#LEF3EF!8-  2 !%!#
2 -.7M(* )8*!#. "%6-.EFQ> A

                                                                                                                     9Z 7 : ?
                                                  (r                         r                      )
                                                       n                         n+1
               xmn ≡ hm| x |ni = x0                      δm,n−1 +                    δm,n+1             .
                                                       2                          2

,;% ^                  } 7
                                       r
                           x0 =
        6EF ]#-*mωE x         *L )*;! 6. *!#"%-."% A
                                            mn
                                                           n + 1 ^ ;*) % 2 %!# %!#66-.
                          r                             r
                              n
hn − 1| x |ni = x0
                                             c
                                   hn + 1| x |ni = x0
EFP]-* E_2E >*- \7M(8* 2 2EFQ>`&(+* 6TN*!#"% O