Задачи по квантовой механике. Часть 2. Корнев А.С. - 65 стр.

UptoLike

Составители: 

r p
r p
ˆ
r
r i}
p
p i}
r
p
ˆ
L
i}[r ×
r
] i}[
p
× p]
ˆ
T
}
2
2m
2
r
p
2
2m
ˆ
V
V (r) V (i}
p
)
b(p) =
Z
r
pp
0
a(p
0
) d
3
p
0
= i}
Z
p
0
δ(p
0
p) a(p
0
) d
3
p
0
=
= i}
p
0
a(p
0
)|
p
0
=p
= i}
p
a(p) =
ˆ
ra(p).
ˆ
r = i}
p
¤
ˆ
T
a
a
ˆ
T
a
ˆ
T
a
ψ(r)
= ψ(r a).
ˆ
T
a
hp|
ˆ
T
a
|p
0
i =
1
(2π})
3
Z
exp
µ
i
}
pr
ˆ
T
a
exp
µ
i
}
p
0
r
d
3
r =
=
1
(2π})
3
exp
µ
i
}
p
0
a
Z
exp
½
i
}
r(p
0
p)
¾
d
3
r
|
{z }
(2π})
3
δ(p
0
p)
= δ(p
0
p) exp
µ
i
}
p
0
a
.
δ
                                                            ?,9
                    ƒ   I †o                       ƒ        Q„  ƒ 
    4     ;                          r
                                                                           r
                                                       ;#S!#66- 
                                                                                      p
                                                                                           p
                                                                                                ;# !#6- 
    C(6 r̂                                          r                                   i}∇p
     G,;*-.%! p                                        −i}∇r                                        p
      4 V ;*-.%! L̂                        −i}[r × ∇r ]                            i}[∇p × p]
      C( *!#"O 2 ]  + 2 T̂                −
                                                              }2 2
                                                                 ∇
                                                                                                       p2
       M( X/-. 2 ] + 2 V̂               2m r
                                                             V (r)
                                                                                                      2m
                                                                                                   V (i}∇p )

                 Z                                    Z
                                0    3 0
        b(p) =           r pp0 a(p ) d p = −i}             ∇p0 δ(p0 − p) a(p0 ) d3 p0 =

                                                      = i}∇p0 a(p0 )|p0 =p = i}∇p a(p) = r̂a(p).
b "      N)  ^ r̂ = i}∇ ^  ; !#%"a6-+ 4;   
 ;*-.%!T"%6% ;p# !#6-  ^€k?<2B€5fgM69u :=> E B9>7\vk E  R W< F G R T̂ G f5 8 2>[5fF24 l6 P9u3 B i €R G 5fF R < E C
 5fF24I> EDEDTi 9< R < 6 6_>769] E=Ti 9> R > EDG 5 g 4?< E F G a4 GMi 5 €B 5fF2>V\ T E <^4I>fg;F G R a 4 BQ\.C          
 D8Y69]U5 EDG \ R > K 5fF2 E B=B€n
                                                 Uc
x(y{z|y{}~€yI @ + -!# ;#-  ;   ^
                                                                        T̂      a
                                                      
                                             T̂a ψ(r) = ψ(r − a).
                                                                                                            9 Z 7 Z5 ?
 I EF!8- 2O2  EFQ\]#-* T9 Z 7 61?  !#N%!# E 8P& "X 2 8(; 
;*-.%!  ! %_9 Z 7 Z5? ^ ;-%' XW;  T̂  ;/-.%!#%
;# !#6-  A                                                                    a


                             Z    µ         ¶      µ       ¶
                     0 1              i              i 0
      hp| T̂a |p i =       3
                               exp − pr T̂a exp         p r d3 r =
                     (2π})            }              }
                    µ        ¶Z      ½            ¾                 µ     ¶
          1            i 0              i     0      3       0        i 0
    =           exp − p a        exp      r(p − p) d r = δ(p −p) exp − p a .
       (2π})3          }               }                              }
                               |           {z          }

4    H)#!#.F+ 6-. #! . XE,7 4/-. ^ A8  2 5TQ! 2 ;%!8-
                                                  (2π})3 δ(p0 −p)



δ
   &("X ^ "O" ) WN*   ;   ! +P\;*-.%!#% ;# S!86-#