Линейные симметричные электрические вибраторы в свободном пространстве. Кубанов В.П. - 20 стр.

UptoLike

Составители: 

20
Рис.1.11
Кривые на рис. 1.11, построенные в зависимости от соотношения 𝑙 𝜆
,
можно при фиксированной длине волны (частоте) рассматривать как зависи-
мость 𝑅
вх
и 𝑋
вх
от длины плеча 𝑙. При фиксированном значении 𝑙 эти же кривые
характеризуют волновые (частотные) свойства вибраторов по входному сопро-
тивлению. Анализ графиков позволяет сделать очень важный вывод: чем боль-
ше радиус вибратора, тем плавнее кривые зависимости 𝑅
вх
и 𝑋
вх
от длины вол-
ны (частоты). Такие вибраторы могут без перестройки работать в более широ-
кой полосе рабочих длин волн (рабочих частот).
Представляется интересным сравнение результатов расчета входного со-
противления рассмотренным приближенным методом [2] и строгим [8].
Сравнение проведено на примере двух вибраторов. Первый вибратор: длина
плеча 𝑙= 0,25𝜆, радиус плеча 𝑎= 0,025𝑙, длина волны 𝜆= 1 м. Второй вибра-
тор: длина плеча 𝑙= 0,5𝜆, радиус плеча 𝑎= 0,025𝑙 , длина волны 𝜆= 1 м. Ре-
зультаты расчетов сведены в таблицу 1.1.
R
0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
250
500
750
1 10
3
Re Z ( )( )
Re Z1 ( )( )
ВХ
R
а)
la 0125.0
la 025.0
0.1 0.2 0.3 0.4 0.5 0.6 0.7
600
350
100
150
400
0Im Z ( )( )
Im Z1 ( )( )
ВХ
X
б)
la 0125.0
la 025.0
                                             a  0 . 0125 l               a  0 .025 l
                                   3
                            110

                             750
          Re ( Z (  ) )
                 RRВХ        500
          Re ( Z1 (  ) )
                             250

                               0
                                0.1    0.2        0.3     0.4       0.5        0.6       0.7
                                                          а)
                                                          



                                        a  0 . 0125 l                      a  0 .025 l
                              400

                              150
              Im( Z (  ) )                                                                0
                 XВХ          100
              Im( Z1 (  ) )

                             350

                             600
                                 0.1   0.2         0.3        0.4     0.5        0.6       0.7

                                                          б)
                                                 Рис.1.11

      Кривые на рис. 1.11, построенные в зависимости от соотношения 𝑙 𝜆 ,
можно при фиксированной длине волны (частоте) рассматривать как зависи-
мость 𝑅вх и 𝑋вх от длины плеча 𝑙. При фиксированном значении 𝑙 эти же кривые
характеризуют волновые (частотные) свойства вибраторов по входному сопро-
тивлению. Анализ графиков позволяет сделать очень важный вывод: чем боль-
ше радиус вибратора, тем плавнее кривые зависимости 𝑅вх и 𝑋вх от длины вол-
ны (частоты). Такие вибраторы могут без перестройки работать в более широ-
кой полосе рабочих длин волн (рабочих частот).
      Представляется интересным сравнение результатов расчета входного со-
противления рассмотренным приближенным методом [2] и строгим — [8].
Сравнение проведено на примере двух вибраторов. Первый вибратор: длина
плеча 𝑙 = 0,25𝜆, радиус плеча 𝑎 = 0,025𝑙, длина волны 𝜆 = 1 м. Второй вибра-
тор: длина плеча 𝑙 = 0,5𝜆, радиус плеча 𝑎 = 0,025𝑙 , длина волны 𝜆 = 1 м. Ре-
зультаты расчетов сведены в таблицу 1.1.




                                                                                                 20