Основные разделы кристаллографии. Кузьмичева Г.М. - 66 стр.

UptoLike

Составители: 

..ГлаваПростыеформыкристалловикомбинациипростыхформ
6
66
Рис. 74. Тетраэдр, октаэдр, гексаэдр (куб)
Тетраэдр. Утроив грани тетраэдра, получим 12-гранник (
рис. 75):
1. грани в виде треугольника (тригона) - тригонтритетраэдр
(пирамидальный тетраэдр) {hhl} (h < l),
2. грани в виде четырехугольника (тетрагона) –тетрагонтритетраэдр
{hhl} (h > l),
3. грани в виде пятиугольника (пентагона) – пентагонтритетраэдр
{hkl},
Грань тетраэдра, переведенная в общее положение, приведет к образованию
24-гранника – тригонгексатетраэдра (гексатетраэдра) {hkl}.
Рис. 75. Простые формы на основе тетраэдра
Октаэдр. Утроив грани октаэдра, получим 24-гранник (
рис. 76) :
1. грани в виде треугольника (тригона) - тригонтриоктаэдр
(пирамидальный октаэдр) {hhl} (h > l),
2. грани в виде четырехугольника (тетрагона) –тетрагонтриоктаэдр
{hhl} (h < l),
3. грани в виде пятиугольника (пентагона) – пентагонтриоктаэдр {hkl}
Грань тетраэдра, переведенная в общее положение, приведет к образованию
48-гранника – тригонгексаоктаэдра (гексаоктаэдра) {hkl}.
     Глава 6. Простые формы кристаллов и комбинации простых форм.




       Рис. 74. Тетраэдр, октаэдр, гексаэдр (куб)
   Тетраэдр. Утроив грани тетраэдра, получим 12-гранник (рис. 75):
   1. грани в виде треугольника (тригона) - тригонтритетраэдр
(пирамидальный тетраэдр) {hhl} (h < l),
   2. грани в виде четырехугольника (тетрагона) –тетрагонтритетраэдр
{hhl} (h > l),
   3. грани в виде пятиугольника (пентагона) – пентагонтритетраэдр
{hkl},
   Грань тетраэдра, переведенная в общее положение, приведет к образованию
24-гранника – тригонгексатетраэдра (гексатетраэдра) {hkl}.




       Рис. 75. Простые формы на основе тетраэдра
   Октаэдр. Утроив грани октаэдра, получим 24-гранник (рис. 76) :
   1. грани в виде треугольника (тригона) - тригонтриоктаэдр
(пирамидальный октаэдр) {hhl} (h > l),
   2. грани в виде четырехугольника (тетрагона) –тетрагонтриоктаэдр
{hhl} (h < l),
   3. грани в виде пятиугольника (пентагона) – пентагонтриоктаэдр {hkl}
   Грань тетраэдра, переведенная в общее положение, приведет к образованию
48-гранника – тригонгексаоктаэдра (гексаоктаэдра) {hkl}.




66