Разностные методы решения задач теплопроводности. Кузнецов Г.В - 111 стр.

UptoLike

111
3.3. ОДНОМЕРНОЕ УРАВНЕНИЕ ТЕПЛОПРОВОДНОСТИ С
ФАЗОВЫМ ПЕРЕХОДОМ НА ГРАНИЦЕ (ИСПАРЕНИЕ
МАТЕРИАЛА)
Рассмотрим процесс теплопроводности в пластине с испарением
на двух границах. Математическая постановка задачи:
Lx
x
T
t
T
c <<
λ=
ρ 0 ,
2
2
; (50)
;0 , :
;0 ,:0
;0 , :0
исписп
исписп
0
>=
λ=
>=
λ=
=
=
tQwq
x
T
Lx
tQwq
x
T
x
LxTTt
(51)
где
(
)
M
RT
PPA
w
н
π
=
2
*
исп
скорость испарения,
=
RT
Q
PP
н
исп
0
exp
давление насыщенного пара, Акоэффициент аккомодации,
0
P
предэкспонент фазового перехода,
исп
Q энергия активации процесса
испарения,
()
КмольДж 31.8
=R универсальная газовая постоянная,
Ммолекулярный вес. В качестве
*
P
рассмотрим атмосферное
давление, т.е.
атм
*
PP = .
Основной интерес в сформулированной краевой задаче
представляют нелинейные граничные условия.
Проведем дискретизацию нелинейного граничного условия II рода
с погрешностью )(hO .
Определим первые прогоночные коэффициенты
11
и βα из
соотношения
1211
β+α
=
TT .
Итак, из второго соотношения (51):
;
2
exp
0
испатм
0
исп
0
0
M
TR
QP
TR
Q
PA
q
x
T
x
x
x
=
=
=
π
=
λ