Программирование и основы алгоритмизации. Литвинов В.Л - 17 стр.

UptoLike

5. ЗАДАНИЕ НА КУРСОВОЕ ПРОЕКТИРОВАНИЕ
В процессе изучения курса студенты должны выполнить курсовой
проект, задание на который составлено в 10 вариантах. Свой вариант студент
выбирает по последней цифре шифра.
В табл. 2 приведены варианты градуировочной таблицы термопар, снятые
в условиях помех. В ней приняты следующие обозначения: Y - измеряемая
величина, X - выход термопары, Emax - максимально-допустимая ошибка
аппроксимации.
В соответствии с вариантом задания необходимо:
1. Составить алгоритм аппроксимации табличной функции степенным
регрессионным полиномом M-го порядка, используя метод наименьших
квадратов.
2. На базе заданных функций перемножения и обращения матриц
umat() и omat() разработать программу, реализующую предложенный алгоритм
на языке C++.
3. С помощью программы определить порядок и коэффициенты
регрессионного полинома, аппроксимирующего градуировочную табл. 2 с
заданной степенью точности.
4. Используя алгоритм схемы Горнера, разработать программу
вычисления полученного степенного полинома.
6. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО
ПРОЕКТА
Задание на курсовую работу связано с аналитической градуировкой
датчиков, сопряженных с управляющей вычислительной машиной (УВМ).
Функциональная зависимость между измеряемой величиной Y и
выходным сигналом датчика X в общем случае определяется зависимостью:
X = F(Y).
Для задач контроля и управления необходимо знать истинное значение
измеряемой величины Y. При известном значении X, Y может быть найден как:
Y =(F)
-1
(X)=f(X).
17