Методы дифференциальных разностей расчета оптических покрытий. Ловецкий К.П - 133 стр.

UptoLike

133
Литература
1. Беллман Р. Введение в теорию матриц. — М.: Наука, 1976.
2. Chu H. Finite Difference Approach to Optical Scattering of Gratings
//Proceedings of the SPIE, Volume 5188, pp. 358-370 (2003).
3. Moharam M.G., Grann E.B., Pommet D.A. Formulation for stable and
efficient implementation of the rigorous coupled-wave analysis of binary
gratings //J. Opt. Soc. Am. A12, 1068(1995).
4. Li L. Use of Fourier series in the analysis of discontinuous structures //J.
Opt. Soc. Am. A13, 1870(1996).
5. Lalanne P. Improved formulation of the coupled-wave method for two-
dimensional gratings //J. Opt. Soc. Am. A14, 1592(1997).
6. Popov E., Nevere M. Grating theory: new equations in Fourier space
leading to fast converging results for TM polarization //J. Opt. Soc. Am.
A17, 1773(2000).
7. Magnus W. On the exponential solution of differential equations for linear
operator //Comm. Pure Appl. Math. V7 649(1949).
8. Barabanenkov Y.N., Kouznetsov V.L., Barabanenkov M.Y. Transfer
relation for electromagnetic wave scattering from periodic dielectric one-
dimensional interface: TE polarization. Progress in Electromagnetics
Research, Pier 24, 39(1999).
9. Li R. Unconventional Reflexive Numerical Methods for Matrix
Differential Riccati Equations, Technical Report 2000-36, Department of
Mathematics University of Kentucky, 2000.
10. Strang G. On the construction and comparison of difference schems,
SIAM J. Num. Anal. 5, 506(1968).
11. Verlet L. Computer experiments‖ on classical fluids. I.