Теоретические основы теплотехники. Ляшков В.И. - 130 стр.

UptoLike

Составители: 

Рубрика: 

При таком же анализе других дифференциальных уравнений можно получить и другие массообменные критерии, а так
же критерии теплового и гидромеханического подобия, такие как Re и Gr. Определенная комбинация из этих критериев
характеризует в обобщенном виде особенности теплофизических свойств мигрирующего компонента и ее называют
массообменным критерием Прандтля
D
ν
=
м
Pr .
При описании неустановившихся процессов и нестационарных полей используется массообменный критерий Фурье
2
l
D
τ
=
м
Fo ,
отображающий в безразмерном виде текущее время. Равенство значений этого критерия у двух подобных явлений означает,
что они рассматриваются в сходственных состояниях.
Критерий Nu
м
является определяемым, остальныеопределяющими, и критериальное уравнение массоотдачи в общем
виде представляется зависимостью
Nu
м
= f (Re, Pr
м
, Fo
м
) .
При установившихся режимах критерий Fo
м
вырождается (не влияет на процесс). При необходимости учитывать
влияние естественной конвекции на массоотдачу в число определяющих критериев включается и критерий Грасгофа
Nu
м
= f (Re, Pr
м
, Gr) .
Исходя из отмеченной выше аналогии, можно доказать, что если для расчета теплоотдачи было получено
критериальное уравнение в виде
Nu = АRe
a
Pr
b
Gr
c
,
то массотдачу можно рассчитывать по аналогичной формуле с соответствующей заменой критериев
Nu
м
= АRe
a
Pr
м
b
Gr
c
, (2.77)
где A, a, b и содни и те же опытные константы. Например, теплоотдачу при турбулентном течении теплоносителя в трубах
рассчитывают по критериальному уравнению, приведенному нами ранее на рис. 2.46,
Nu = 0,021Re
0,8
Pr
0,43
.
На основании аналогии для массоотдачи от слоя жидкости, равномерно покрывающего внутреннюю поверхность
трубы, к турбулентному потоку парогазовой смеси можно записать следующее критериальное уравнение
Nu
м
= 0,021Re
0,8
Pr
м
0,43
.
Сопоставление результатов, рассчитанных по этой формуле, с результатами экспериментальных измерений
коэффициента массоотдачи показывает их приемлемое совпадение (расхождение в
± 20 % считается допустимым).
Однако обычно значения
A, a, b и с в формуле (2.77) определяют путем соответствующей обработки
экспериментальных данных по массоотдаче. Так, для расчета массоотдачи при сушке гранул в продуваемом слое
рекомендуется следующее критериальное уравнение
Nu
м
= 1,3Re
0,5
Pr
м
0,33
Gu
0,135
,
где Gu = (T
п
T
мт
) / T
п
так называемый критерий Гухмана, отражающий влияние интенсивности испарения на массоотдачу;
T
п
абсолютная температура поверхности гранул; T
мт
абсолютная температура мокрого термометра, установленного вне
пограничного слоя. Определяющий размер здесьдиаметр гранулы
d. Для расчетов массообмена при испарении с плоской
поверхности жидкости при вынужденном движении влажного газа А. В. Нестеренко предложено следующее критериальное
уравнение
Nu
м
= ARe
a
Pr
м
0,33
Gu
0,135
,
где А = 0,83 и а = 0,53 при Re 120, А = 0,49 и а = 0,61 при Re = 3150 2200 и А = 0,0248 и а = 0,9 при Re = (0,22 … 3,15) 10
5
. В
качестве определяющего размера здесь принимается длина поверхности вдоль по потоку смеси.
Вопросы зачетного минимума по разделу 2
1 Назовите три элементарных формы теплообмена.
2
Какие процессы теплообмена называют теплоотдачей? Теплопередачей?
3 Что называют температурным полем? Какими бывают эти поля?
4 Что называют температурным напором?
5
Что характеризует температурный градиент?
6 Какие характеристики используются для оценки и сравнения интенсивности процессов теплообмена?
7
Что характеризует величина коэффициента теплопроводности?
8
Какие законы природы отражены дифференциальным уравнением теплопроводности?
9 Запишите дифференциальное уравнение теплопроводности и объясните его физический смысл.
10
Перечислите условия однозначности при решении задач теплопроводности.
11 Как формулируются граничные условия первого рода?
12 Как формулируются граничные условия третьего рода?
13
Какие плоские стенки можно относить к разряду неограниченных?