Теоретическая механика в примерах и задачах. Аналитическая механика. Удар. Манжосов В.К - 26 стр.

UptoLike

26
от связей, наложенных на эту точку, в остальном оно произвольно. При этом, в
силу нерастяжимости нити, груз В получит равное по модулю возможное пере-
мещение, направленное вдоль наклонной плоскости вверх, а блок D получит
угловое возможное перемещение
Взяв точку нити на ободе блока, получим
зависимость между линейным и угловым возможными перемещениями
(3.3)
где
- радиус
Применим к данной системе материальных точек общее уравнение дина-
мики, т. е. приравняем нулю сумму работ задаваемых сил (включая силы реак-
ции неидеальных связей) и сил инерции на возможных перемещениях точек
системы
(3.4)
Подставив в уравнение
и воспользовавшись
формулами
(3.2) и (3.3), после сокращения на
получим:
откуда находим проекцию искомого ускорения грузов
(3.5)
Если бы по условию задачи требовалось также определить какиелибо си-
лы реакций связей либо давлений на связи, то пришлось бы применить принцип
освобождаемости к связи, силу реакции которой требуется определить, и к со-
ответствующей массе системы применить метод кинетостатики. При наличии
вычисленных ускорений это не представляет затруднений.
Так, если требуется определить силу реакции правой ветви нити, мы мыс-
ленно обрываем нить вблизи груза А, прикладываем к грузу три силы (см. рис.
б):
вес груза,
силу реакции нити,
силу инерции груза
Записываем уравнение «равновесия» груза А в проекции на вертикальную
Так как
ускорение груза, записанное в формуле (3.5).
После подстановки значения
получим: