Прямая и плоскость. Машанов В.И - 44 стр.

UptoLike

16
?
1
7
? =
+
=
y
=++
=+
013
013
zx
zyx
θ
θ
θ
=
=
+
=
1
;1035
;38
z
y
x
17
1
1
7
1
1
=
+
=
zyx
=+
=++
01
03
zx
zyx
θ
θ
θ
=
=
+
=
z
y
x
;24
;1
18
1
1
8
1
1 zyx
=
+
=
=
=+++
01
04
zx
zyx
θ
θ
θ
+=
=
+
=
1
;24
;2
z
y
x
19
1
1
3
2
1 zyx
=
+
=
=
=++
012
052
zx
zyx
θ
θ
θ
+=
=
+
=
1
;56
;28
z
y
x
20
1
1
8
3
2 zyx
=
+
=
=
=++
023
093
zx
zyx
θ
θ
θ
+=
=
+
=
1
;1015
;315
z
y
x
21
2
1
2
1
1 zyx
=
+
=
=
=++
022
052
zx
zyx
θ
θ
θ
29
;53
;8
+=
=
+
=
z
y
x
22
2
1
3
1
2
=
+
=
+
zyx
=++
=+
042
012
zx
zyx
θ
θ
θ
2
;514
;3
=
=
+
=
z
y
x
23
1
1
1
1
1 zyx
=
+
=
+
=+
=++
01
01
zx
zyx
θ
θ
θ
+=
=
+
=
1
;21
;2
z
y
x
24
1
1
10
3
2 zyx
=
+
=
=
=++
023
073
zx
zyx
θ
θ
θ
+=
=
+
=
2
;1020
;36
z
y
x
25
1
1
4
2
1 zyx
=
+
=
=
=++
012
042
zx
zyx
θ
θ
θ
+=
=
+
=
2
;510
;22
z
y
x
16        y+7          3x + y − z − 1 = 0    x = −8 + 3θ ;
     ?=       =?       
           1            x + 3z + 1 = 0       y = 35 − 10θ ;
                                              z = −1 − θ
17   x −1 y + 7    z   x + y − z + 3 = 0     x = −1 + θ ;
         =      =      
       1    1     −1    x + z −1 = 0         y = 4 − 2θ ;
                                              z = −θ
18   x −1 y + 8 z      x + y + z + 4 = 0     x = 2 + θ;
         =     =       
       1    1    1      x − z −1 = 0         y = 4 − 2θ ;
                                              z = −1 + θ
19   x −1 y + 3 z      2 x + y + z − 5 = 0   x = 8 + 2θ ;
         =     =       
       2    1    1      x − 2z − 1 = 0       y = −6 − 5θ ;
                                              z =1+ θ
20   x−2 y +8 z        3x + y + z − 9 = 0    x = 15 + 3θ ;
        =    =         
      3    1   1        x − 3z − 2 = 0       y = −15 − 10θ ;
                                              z =1+θ
21   x −1 y + 2 z      x + y + 2z − 5 = 0    x = 8 + θ;
         =     =       
       1    1    2      2x − z − 2 = 0       y = −3 − 5θ ;
                                              z = 9 + 2θ
22   x+2 y+3    z      x + y − 2z − 1 = 0    x = −3 + θ ;
        =    =         
      1   1    −2       2x + z + 4 = 0       y = −14 − 5θ ;
                                              z = −2θ
23   x +1 y +1 z       x + y + z − 1 = 0     x = 2 + θ;
         =    =        
       1    1   1       x − z +1 = 0         y = 1 − 2θ ;
                                              z =1+θ
24   x − 2 y + 10 z    3x + y + z − 7 = 0    x = 6 + 3θ ;
          =      =     
       3     1     1    x − 3z − 2 = 0       y = −20 − 10θ ;
                                              z = −2 + θ
25   x −1 y + 4 z      2 x + y + z − 4 = 0   x = 2 + 2θ ;
         =     =       
       2    1    1      x − 2z − 1 = 0       y = −10 − 5θ ;
                                              z = 2 +θ