Специальные функции. Мицик М.Ф. - 10 стр.

UptoLike

Составители: 

Рубрика: 

( )
=
=
n
n
n
z
z
x
zxJe
1
2
. (28)
      

( )
1
1
1
2
2
1
+
=
=
ν
ν
π z
dz
e
i
xJ
z
z
z
x
, 
0
>
ν
.
  « »   

( )
xJ
n
( )
( )
+
=
xxO
n
x
x
xJ
n

42
cos
2
1
ππ
π
(29)
.
    , 
( )
xJ
n

( )
xJ
n
  .   
 ,    
( )
xJ
ν


0
>
ν
.
  (27)     ,
:
νπ
νπ
νπ
sin
1
,
sin
cos
21
== CC

( )
xN
ν
:
( )
( ) ( )
.
sin
cos
νπ
νπ
νν
ν
xJxJ
xN
=
(30)
, , 
( )
xN
ν

n
ν
. , 
( ) ( )
,lim xNxN
n
n ν
ν→
=
(31)
    ,   

0
>
ν
.  ,   (31)  

( )
xJ
ν
.

( )
xN
ν

ν
.
, 
ν
:
( ) ( ) ( )
.
21
xNCxJCxy
νν
+=
(32)
, 
       
                            x 1            ∞
                              z− 
                        e   2 z 
                                      =   ∑ J (x) z
                                          n=−∞
                                                 n
                                                               n
                                                                   .                                                   (28)



                                                            x 1 
                                                              z− 
                        Jν ( x ) =
                                    1                                       dz
                                                 ∫e
                                                            2 z 
                                                                                            ν >0.
                                   2π i          z =1
                                                                           zν +1 ,
             «                                                         »
                 J n (x)
                                  πn π 
J n (x ) =
                       2
                      πx
                            
                         cos x −    −  + O x −1                          ( )                    x→∞                  (29)
                                  2  4

                                                                                              .

                                                                                    ,               J n (x)            J − n (x )
                                                        .
                            ,                                                                                 Jν ( x )
 ν >0.
                            (27)                                                                                                ,
                                                                                                         :
                             cosνπ              1
                        C1 =        , C2 = −
                             sinνπ           sinνπ
                              Nν (x ) :
                                 cosνπ Jν ( x) − J −ν (x)
                        Nν (x) =                          .                                                            (30)
                                        sinνπ
                  ,                                                             ,                   Nν (x )            ν →n
         .                  ,
                        N n (x) = lim Nν ( x),                                                                         (31)
                                      ν →n
                                                                                        ,
   ν >0.                                                ,                                   (31)
                      Jν ( x ) .
                      Nν (x )                                                                                     ν.
     ,                                                                                              ν                    :
                        y( x) = C1 Jν (x) + C2 Nν ( x).                                                                (32)
                                                                                                              ,