ВУЗ:
Составители:
Рубрика:
( )
( )
( )
.
1!
2
1
2
0
2
∑
∞
=
−
−
+−Γ
−
=
k
k
k
kk
x
x
xJ
ν
ν
ν (26)
, (25) (26)
,
(
)
xJ
ν
0
=
x
,
( ) ( )
.0,00,10
0
>
=
=
ν
ν
JJ
( )
xJ
ν−
( )
....,2,1, =≠ nnν
0
=
x
,
ν
:
( )
( )
( )
0,
1
2
~ →≠
−Γ
−
xn
x
xJ
ν
ν
ν
ν
.
,
( )
....,2,1, =≠ nnν
( )
xJ
ν
( )
xJ
ν−
,
:
( ) ( ) ( ) ( )
....,2,1,
21
=≠+=
−
nnxJCxJCxy ν
νν
. (27)
,
n
=
ν
,
( )
xJ
ν
( )
−
−
xJ
ν
(27).
.
2
(
)
Rba ⊂;
( ) ( ) ( ) ( )
{
}
....,,,,...,
2101
xxxx ϕϕϕϕ
−
.
( ) ( )
n
n
n
zxzx
∑
∞
∞−=
=ϕω ;
z
,
( )
bax ;
∈
,
( )
zx;
ω
( )
{ }
x
n
ϕ
.
( )
xJ
ν
.
( )
xJ
n
( )
−
=
z
z
x
ezx
1
2
;ω
,
2k
−ν ∞ (− 1) x k
x 2 .
J −ν (x ) = ∑
2 k =0 k!Γ(k − ν + 1)
(26)
, (25) (26)
, Jν ( x )
x = 0,
J 0 (0) = 1, Jν (0) = 0 , ν > 0.
J −ν (x ) ν ≠ n, (n = 1, 2, ....)
x = 0,
ν:
J −ν ( x ) ~ (ν ≠ n, x → 0) .
2
x Γ(1 −ν )
ν
, ν ≠ n, (n = 1, 2, ....) Jν ( x ) J −ν (x )
,
:
y( x ) = C1 Jν ( x) + C2 J −ν ( x), ν ≠ n (n = 1, 2,....) . (27)
, ν = n, Jν ( x ) J −ν ( x ) −
(27).
2 . (a ; b) ⊂ R
{ ...,ϕ−1(x), ϕ0 (x),ϕ1( x), ϕ2 (x),....} .
∞
ω (x; z ) = ∑ϕ ( x ) z
n
n
n=−∞
z,
x ∈ (a ; b) , ω (x; z )
{ϕn (x)}.
Jν ( x ) .
J n (x)
x 1
z−
ω ( x; z ) = e 2 z
,
Страницы
- « первая
- ‹ предыдущая
- …
- 7
- 8
- 9
- 10
- 11
- …
- следующая ›
- последняя »
