ВУЗ:
Составители:
Рубрика:
( )
...,2,1,2 == kkm
,
:
( )
...,2,1,
2
2
22
2
=
+
=
−
k
kk
a
a
k
k
ν
(22)
( )
,
12
2
0
2
+
−=
ν
a
a
( )
( )( )
,
2122222
4
0
2
2
4
++
=
+
−=
ννν
aa
a
( )
( )( )( )
,
321322332
6
0
2
4
6
+++⋅
−=
+
−=
νννν
a
a
a
. k
:
( )
( )( )( )
....,2,1,
....21!2
1
2
0
2
=
+++
−= k
kk
a
a
k
k
k
ννν
, :
( )
( )
( )( )( )
.
....21!
2
1
0 0
2
0
2
2
∑∑
∞
=
∞
=
+++
−
==
m m
k
k
k
k
kk
x
a
xxaxxy
ννν
νν
(23)
.
(23)
( )
.
12
1
0
+Γ
=
ν
ν
a
(24)
.
1
0
a
(24)
ν
,
(
)
xJ
ν
:
( )
( )
( )
∑
∞
=
++Γ
−
=
0
2
1!
2
1
2
k
k
k
kk
x
x
xJ
ν
ν
ν (25)
0
>
ν
,
(25),
ν
ν
−
:
m = 2k , (k = 1, 2, ...) ,
:
a2 k − 2
a2 k = , k = 1, 2, ...
2 2 k (k + ν )
(22)
a0
a2 = − ,
2 (ν + 1)
2
a2 a0
a4 = − = 4 ,
2 2(ν + 2) 2 2(ν + 1)(ν + 2)
2
a a0
a6 = − 2 4 =− 6 ,
2 3(ν + 3) 2 2 ⋅ 3(ν + 1)(ν + 2)(ν + 3)
. k
:
a2 k = (− 1)
a0
, k = 1, 2,....
k
2 k!(ν + 1)(ν + 2)....(ν + k )
2k
, :
2k
x
∞ ∞
(− 1) a0
k
y( x) = x ∑ a2k x = x ∑
ν 2k ν 2 .
m =0 m=0 k! (ν + 1)(
ν + 2 )....(ν + k ) (23)
.
(23)
1
a0 = .
2ν Γ(ν + 1)
(24)
1 . a0
(24) ν, Jν ( x )
:
2k
x
ν ∞ (− 1)
k
x 2
Jν ( x ) = ∑
2 k =0 k!Γ(k +ν + 1)
(25)
ν >0,
(25), ν −ν :
Страницы
- « первая
- ‹ предыдущая
- …
- 6
- 7
- 8
- 9
- 10
- …
- следующая ›
- последняя »
