ВУЗ:
Составители:
Рубрика:
( )
...,2,1,2 == kkm
,
:
( )
...,2,1,
2
2
22
2
=
+
=
−
k
kk
a
a
k
k
ν
(22)
( )
,
12
2
0
2
+
−=
ν
a
a
( )
( )( )
,
2122222
4
0
2
2
4
++
=
+
−=
ννν
aa
a
( )
( )( )( )
,
321322332
6
0
2
4
6
+++⋅
−=
+
−=
νννν
a
a
a
. k
:
( )
( )( )( )
....,2,1,
....21!2
1
2
0
2
=
+++
−= k
kk
a
a
k
k
k
ννν
, :
( )
( )
( )( )( )
.
....21!
2
1
0 0
2
0
2
2
∑∑
∞
=
∞
=
+++
−
==
m m
k
k
k
k
kk
x
a
xxaxxy
ννν
νν
(23)
.
(23)
( )
.
12
1
0
+Γ
=
ν
ν
a
(24)
.
1
0
a
(24)
ν
,
(
)
xJ
ν
:
( )
( )
( )
∑
∞
=
++Γ
−
=
0
2
1!
2
1
2
k
k
k
kk
x
x
xJ
ν
ν
ν (25)
0
>
ν
,
(25),
ν
ν
−
:
m = 2k , (k = 1, 2, ...) , : a2 k − 2 a2 k = , k = 1, 2, ... 2 2 k (k + ν ) (22) a0 a2 = − , 2 (ν + 1) 2 a2 a0 a4 = − = 4 , 2 2(ν + 2) 2 2(ν + 1)(ν + 2) 2 a a0 a6 = − 2 4 =− 6 , 2 3(ν + 3) 2 2 ⋅ 3(ν + 1)(ν + 2)(ν + 3) . k : a2 k = (− 1) a0 , k = 1, 2,.... k 2 k!(ν + 1)(ν + 2)....(ν + k ) 2k , : 2k x ∞ ∞ (− 1) a0 k y( x) = x ∑ a2k x = x ∑ ν 2k ν 2 . m =0 m=0 k! (ν + 1)( ν + 2 )....(ν + k ) (23) . (23) 1 a0 = . 2ν Γ(ν + 1) (24) 1 . a0 (24) ν, Jν ( x ) : 2k x ν ∞ (− 1) k x 2 Jν ( x ) = ∑ 2 k =0 k!Γ(k +ν + 1) (25) ν >0, (25), ν −ν :
Страницы
- « первая
- ‹ предыдущая
- …
- 6
- 7
- 8
- 9
- 10
- …
- следующая ›
- последняя »