Специальные функции. Мицик М.Ф. - 19 стр.

UptoLike

Составители: 

Рубрика: 

     
( )
xT
n
 

n
( )
( )
( )
++=
nn
n
xxxxxT 11
2
1
22
(63)
  (61)     
, 
n

1
+
n
() ( ) ( )
( ) ( )
=
+
=
=+=+=
+
2
1cos1cos
coscossinsin
coscoscos1cos
1
unun
unuunu
uunununuxT
n
( )
( )
( )
2
2
11
xTxT
xxT
nn
n
+
+=
     

xTxxTxT
nnn 11
2
+
=
(64)
  (64)   (62)   

.52016,188
,34,12,,1
35
5
24
4
3
3
2
210
xxxTxxT
xxTxTxTT
+=+=
====
(65)
  Maple 9.5,   4  

 4.

( ) ( ) ( ) ( ) ( )
.,,,,
43210
xTxTxTxTxT
0
T
1
T
2
T
3
T
4
T
                                                                                    Tn ( x )
                     n
       Tn ( x ) =
                    1
                     
                    2
                       x (
                         − x 2
                               − 1
                                   n
                                     + x ) (
                                         + x 2
                                               − 1
                                                   n
                                                     
                                                     
                                                     
                                                                   )                                 (63)
                    (61)
                      ,                         n         n +1
Tn+1 ( x ) = cos u (n + 1) = cos(nu + u ) = cos nu ⋅ cos u −
                                             cos(n − 1)u − cos(n + 1)u
− sin nu ⋅ sin u = cos nu ⋅ cos u −                                    =
                                                         2
                Tn−1 ( x ) Tn+1 ( x )
= xTn ( x ) −             +
                   2          2


                         Tn +1 ( x ) = 2 xTn ( x ) − Tn−1 ( x )                                      (64)
                             (64)                        (62)

       T0 = 1, T1 = x, T2 = 2 x 2 − 1, T3 = 4 x 3 − 3x,
                                                                                                     (65)
      T4 = 8 x 4 − 8 x 2 + 1, T5 = 16 x 5 − 20 x 3 + 5 x.
                                Maple 9.5,                               4

                                                            T0

                                                                 T1




     T3                                                                        T4
                                    T2

                                                    4.
                                              T0 ( x ), T1 ( x ), T2 ( x ) , T3 ( x ) , T4 ( x ) .