ВУЗ:
Составители:
Рубрика:
c
,
( )
ϕΦ
−
π
2
. ,
,....2,1,0,
2
=−= kk
.
( )
ϕϕϕ kCk sincos
21
+=Φ
,
−
21
,C
.
( )
rR
( )
222
k
rR
Rr
r −=
+
′
′
−ν
,
0
1
2
2
2
=
−+
′
+
′′
R
r
k
R
r
R ν
(39)
(39) (35), .
( )
0
0
=rR
, ,
( )
rR
.
( ) ( )
rJrR
k
ν=
0
,
( )
−xJ
m
.
(39)
( )
rN
k
ν
,
0
=
r
.
k
,
() ( )
0
00
== rJrR
k
ν
.
,
0
rk
( )
xJ
k
( )
( )
( )
,....2,1,0,....,3,2,1,0,
0
==== knJ
r
k
nk
k
n
µ
µ
ν
,
( )
( )
,.....2,1,0,....,3,2,1,
0
0
==
= knr
r
JrR
k
n
k
µ
(37),
:
( )
( )
( )
×
+=
00
,
sincos;;
r
at
B
r
at
Atru
k
n
k
n
kn
µµ
ϕ
( )
( )
+× r
r
JkCk
k
n
k
0
21
sincos
µ
ϕϕ
(40)
c , Φ(ϕ )
2π − . ,
= −k ,
2
k = 0, 1, 2,.... .
Φ(ϕ ) = 1 cos kϕ + C2 sin kϕ ,
1 , C2 − .
R(r )
′
2 (rR ′)
−r + ν 2 = −k 2 ,
rR
1 2 k2
R′′ + R′ + ν − 2 R = 0 (39)
r r
(39) (35), .
R (r0 ) = 0
, , R(r ) .
R(r0 ) = J k (ν r ) ,
J m (x) − .
(39) N k (ν r ) ,
r=0 .
k ,
R(r0 ) = J k (ν r0 ) = 0 .
, k r0 J k (x )
µ n(k )
ν=
r0
( )
, J k µ n(k ) = 0, n = 1, 2, 3,...., k = 0,1, 2,....
,
µ n(k )
R(r0 ) = J k r , n = 1, 2, 3,...., k = 0,1, 2,.....
0
r
(37),
:
(k ) (k )
µ at µ at
un ,k (r ;ϕ ; t ) = A cos + B sin
n
× n
r0 r0
µ n(k )
× ( 1 cos kϕ + C2 sin kϕ )J k r (40)
0
r
Страницы
- « первая
- ‹ предыдущая
- …
- 10
- 11
- 12
- 13
- 14
- …
- следующая ›
- последняя »
