Уравнения математической физики. Мицик М.Ф. - 21 стр.

UptoLike

Составители: 

Рубрика: 

, 

.;sin;cos zzryrx
=
=
=
ϕ
ϕ

, 
2
2
2
2
2
2
2
2
2
2
11
ϕ
+
+
=
+
+
u
rr
u
rr
u
z
u
y
u
x
u
.

0
11
2
2
2
2
=
+
+
ϕ
u
rr
u
rr
u
. (81)
.
 (81),  (80) 
z
, 

z
. , 


D
, 
2
1
22
1
: RyxK =+

2
2
22
2
: RyxK =+
:
( ) ( )
2211
;,; uRuuRu =ϕ
. (82)
. 

ϕ
, , 
ϕ
.
 (81) :
0
1
2
2
=
+
r
u
r
r
u
.
, :
21
ln Cru +=
. (83)

1

2
 (82):
22122111
ln,ln CRuCRu +=+=
.
:
.
ln
lnln
,
ln
1
2
1122
2
1
2
12
1
R
R
RuRu
R
R
uu
=
=

1

2
 (83), :
.
ln
lnln
1
2
2
1
1
2
R
R
R
r
u
R
r
u
u
=
                                                                                       ,

         x = r cos ϕ ; y = r sin ϕ ; z = z.

    ,
         ∂ 2u ∂ 2 u ∂ 2 u ∂ 2u 1 ∂ u 1 ∂ 2 u
              +     +     =    +    +
         ∂ x 2 ∂ y 2 ∂ z 2 ∂r 2 r ∂r r ∂ϕ 2 .

                   ∂ 2u 1 ∂ u 1 ∂ 2 u
                       +     +        = 0.                                                      (81)
                   ∂r 2 r ∂r r ∂ϕ 2
                                                                                   .
                             (81),                                         (80)                     z,
                                               z.                      ,

–              D,
                K1 : x 2 + y 2 = R12                K 2 : x 2 + y 2 = R22
                         :
                   u(R1;ϕ ) = u1, u(R2 ;ϕ ) = u2 .                                              (82)
                                                              .
          ϕ,                                                       ,                           ϕ.
        (81)                                              :
                            ∂ 2u 1 ∂ u
                                +      = 0.
                            ∂r 2 r ∂r
                                ,              :
                           u=         1   ln r + C2 .                                           (83)
          1         2                      (82):
        u1 =        1   ln R1 + C2 , u 2 =            1   ln R2 + C2 .
               :
                   u 2 − u1                    u 2 ln R2 − u1 ln R1
          1    =            ,          2   =                        .
                       R2                                R2
                    ln                                ln
                       R1                                R1
                                               1      2                    (83),           :
                                             r           r
                                    u 2 ln       − u1 ln
                                             R1          R2
                           u=                               .
                                                 R2
                                              ln
                                                  R1