ВУЗ:
Составители:
Рубрика:
( )( )
rDBAu ln
00000
++=ϕ
.
ϕ
,
0
0
=
B
,
,
0
0
=
D
.
2
0
0
A
u =
.
(74) ,
....3,2,1,0
=
=
kD
k
, (68)
( ) ( )
∑
∞
=
++=
1
0
sincos
2
;
n
n
nn
rnBnA
A
ru ϕϕϕ
(75)
(75) (67), :
( ) ( )
∑
∞
=
++=
1
0
0
sincos
2
n
n
nn
rnBnA
A
f ϕϕϕ
. (76)
,
n
A
n
B
( ) ( )
,....2,1,0,sin
1
,cos
1
00
===
∫∫
−−
nntdttf
r
Bntdttf
r
A
n
n
n
n
π
π
π
π
ππ
(75)
n
A
n
B
(76), :
( )
( ) () ( )
=
−+=
∑
∫∫
∞
=
−−
n
n
r
r
dttntfdttfru
0
1
cos
1
2
1
; ϕ
ππ
ϕ
π
π
π
π
( ) ( )
.cos21
2
1
1
0
dttn
r
r
tf
n
n
−
+=
∑
∫
∞
=
−
ϕ
π
π
π
(77)
0
rr <
( )
( ) ( )
[ ]
( )
( )
( )
( )
( )
=
+−−
−
=
−
+
−
+=
=+
+=
−
+
−−
−−
−
−
−−−
∞
=
∞
=
∑∑
2
00
2
0
0
0
0
0
1
0
1
0
cos21
1
11
1
1cos21
r
r
t
r
r
r
r
e
r
r
e
r
r
e
r
r
e
r
r
ee
r
r
tn
r
r
ti
ti
ti
ti
tintin
n
n
n
n
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕϕ
( )
.
cos2
2
0
2
0
22
0
rtrrr
rr
+−−
−
=
ϕ
(78)
u0 = ( A0 + B0ϕ )( 0 + D0 ln r ) . ϕ, B0 = 0 , , D0 = 0 . A0 u0 = . 2 (74) , Dk = 0, k = 1,2,3.... , (68) ∞ u (r; ϕ ) = + ∑ ( An cos nϕ + Bn sin nϕ ) r n A0 (75) 2 n=1 (75) (67), : ∞ f (ϕ ) = + ∑ ( An cos nϕ + Bn sin nϕ ) r0n . A0 (76) 2 n=1 , An Bn π π ∫−π f (t ) cos ntdt, Bn = πr0n ∫ f (t ) sin ntdt, n = 0,1,2,.... 1 1 An = n πr0 −π (75) An Bn (76), : π π n 1 ∞ r u(r; ϕ ) = ( ) ( ) ( ) 1 2π ∫−π f t dt + ∑ π n=1 −∫π f t cos n t − ϕ dt = r0 π ∞ r n f (t ) 1 + 2∑ cos n(t − ϕ ) dt . 1 = 2π ∫ −π n =1 r0 (77) r < r0 r n n r in (t −ϕ ) [ ] ∞ ∞ 1 + 2∑ cos n(t − ϕ ) = 1 + ∑ e + e −in (t −ϕ ) = n =1 r0 n =1 r0 2 r i (t −ϕ ) r −i (t −ϕ ) r e e 1 − =1+ 0 r r + 0 = r0 = 2 r i (t −ϕ ) r −i (t −ϕ ) 1− e 1− e 1 − 2 cos(t − ϕ ) + r r r0 r0 r0 r0 r02 − r 2 = 2 . r0 − 2r0 r cos(t − ϕ ) + r 2 (78)