Уравнения математической физики. Мицик М.Ф. - 19 стр.

UptoLike

Составители: 

Рубрика: 

( )( )
rDBAu ln
00000
++
.

ϕ
, 
0
0
=
B
, 
, 
0
0
=
D
. 

2
0
0
A
u =
.
 (74) , 
....3,2,1,0
=
=
kD
k
,  (68) 
( ) ( )
=
++=
1
0
sincos
2
;
n
n
nn
rnBnA
A
ru ϕϕϕ
(75)
 (75)  (67), :
( ) ( )
=
++=
1
0
0
sincos
2
n
n
nn
rnBnA
A
f ϕϕϕ
. (76)
,
n
A

n
B

( ) ( )
,....2,1,0,sin
1
,cos
1
00
===
nntdttf
r
Bntdttf
r
A
n
n
n
n
π
π
π
π
ππ
 (75) 
n
A

n
B
 (76), :
( )
( ) () ( )
=
+=
=
n
n
r
r
dttntfdttfru
0
1
cos
1
2
1
; ϕ
ππ
ϕ
π
π
π
π
( ) ( )
.cos21
2
1
1
0
dttn
r
r
tf
n
n
+=
=
ϕ
π
π
π
(77)

0
rr <
( )
( ) ( )
[ ]
( )
( )
( )
( )
( )
=
+
=
+
+=
=+
+=
+
=
=
2
00
2
0
0
0
0
0
1
0
1
0
cos21
1
11
1
1cos21
r
r
t
r
r
r
r
e
r
r
e
r
r
e
r
r
e
r
r
ee
r
r
tn
r
r
ti
ti
ti
ti
tintin
n
n
n
n
ϕ
ϕ
ϕ
ϕ
ϕ
ϕ
ϕϕ
( )
.
cos2
2
0
2
0
22
0
rtrrr
rr
+
=
ϕ
(78)
                u0 = ( A0 + B0ϕ )(             0   + D0 ln r ) .
                                                      ϕ,      B0 = 0 ,
                                                                              ,        D0 = 0 .

                                              A0
                                      u0 =       .
                                              2
                                                                   (74)                                ,
Dk = 0, k = 1,2,3....
                                ,                              (68)
                                          ∞
                u (r; ϕ ) =            + ∑ ( An cos nϕ + Bn sin nϕ ) r n
                                    A0
                                                                                                           (75)
                                    2 n=1
                (75)                     (67),             :
                                ∞
       f (ϕ ) =         + ∑ ( An cos nϕ + Bn sin nϕ ) r0n .
                     A0
                                                                                                           (76)
                     2 n=1
                      , An Bn
            π                                         π

           ∫−π f (t ) cos ntdt, Bn = πr0n             ∫ f (t ) sin ntdt, n = 0,1,2,....
     1                                1
An = n
    πr0                                               −π

                     (75)               An       Bn                   (76),                        :
                            π                      π                                           n
                                            1 ∞                               r
       u(r; ϕ ) =                 (  )                  (  )      (      )
                   1
                  2π        ∫−π f  t   dt +   ∑
                                            π n=1 −∫π
                                                      f  t   cos n t − ϕ   dt   =
                                                                                r0 
                π                 ∞
                                       r
                                              n
                                                       
                     f (t ) 1 + 2∑   cos n(t − ϕ ) dt .
          1
       =
         2π     ∫
                −π              n =1  r0           
                                                                                                           (77)

                                                                                  r < r0
          r
                  n
                                              n
                                         r  in (t −ϕ )
                                                               [                           ]
       ∞                            ∞
1 + 2∑   cos n(t − ϕ ) = 1 + ∑   e             + e −in (t −ϕ ) =
    n =1  r0                 n =1  r0 

                                                                              2
       r i (t −ϕ )      r −i (t −ϕ )                  r
         e                e                      1 −  
=1+ 0
      r                r
                     + 0               =               r0            =
                                                                     2
        r i (t −ϕ )       r −i (t −ϕ )                            
    1− e              1− e               1 − 2 cos(t − ϕ ) +  
                                              r                 r
        r0               r0                   r0               r0 
           r02 − r 2
= 2                           .
 r0 − 2r0 r cos(t − ϕ ) + r 2
                                                                                                           (78)