Уравнения математической физики. Мицик М.Ф. - 18 стр.

UptoLike

Составители: 

Рубрика: 

, 
ϕ
.
, 

ϕ
, 
E
,  (65) .
7. .

0
r


( )
ϕf
, 
ϕ

 (. .3). 
( )
ϕ;ru
, ,
, 
0
2
2
2
2
=
+
y
u
x
u

( ) ( )
ϕϕ fru =;
0
. (67)
 (67) . 
0
11
2
2
22
2
=
+
+
ϕ
u
rr
u
rr
u
(68)

( )
ϕ;ru
.
( ) ( ) ( )
rRru ϕϕ Φ=;
. (69)
 (68) (67), :
( ) () ( ) () ( ) ()
0
2
=Φ
+
Φ+
Φ rRrRrrRr ϕϕϕ

( )
( )
( ) ( )
( )
2
2
k
rR
rRrrRr
=
+
=
Φ
Φ
ϕ
ϕ
. (70)
 (70) :
0
2
=Φ+Φ
ϕϕ k
,
( ) ( ) ( )
0
22
=
+
rRkrRrrRr
(71)
 (71):
( )
ϕϕϕ kBkA sincos +=Φ
. (72)
 (71) 
( )
m
rrR =
.
 (71)
( )
01
2122
=+
mmm
rkrmrrmmr

0
22
= km
.
 (71)
( )
kk
DrrrR
+=
. (73)
 (72) (73)  (69):
( ) (
)
(
)
,....3,2,1,sincos; =++=
krDrkBkAru
k
k
k
kkkk
ϕϕϕ
(74)

0
=
k
:
                      ,                                                        ϕ                                            .
                                                                                                         ,
             ϕ,                                                            E,                        (65)               .

                                   7.                                                                .

                                                                                              r0
                                                                                         f (ϕ ) ,     ϕ –
(        .        .3).                                                           u (r ; ϕ ) ,                          ,
                              ,
                                           ∂ 2u ∂ 2u
                                               +      =0
                                           ∂ x2 ∂ y 2

                                  u (r0 ; ϕ ) = f (ϕ ) .                                                             (67)
                                          (67)                                                .
                                  ∂ u 1 ∂u 1 ∂ u
                                    2                              2
                                      +     +        =0                                                              (68)
                                  ∂ r2 r ∂ r r2 ∂ϕ 2
             u (r ; ϕ )                                                                                      .
                                  u (r ; ϕ ) = Φ (ϕ )R(r ) .                                                         (69)
                (68) (67),                                 :
                r Φ(ϕ )R′′(r ) + r Φ(ϕ )R′(r ) + Φ′′(ϕ )R(r ) = 0
                  2




                                  Φ′′(ϕ )    r 2 R′′(r ) + r R′(r )
                                          =−                        = −k 2 .
                                  Φ(ϕ )              R(r )
                                                                                                                     (70)
              (70)                                                                 :
    Φ′′(ϕ ) + k Φ(ϕ ) = 0 ,
                          2
                                                   r R′′(r ) + r R′(r ) − k 2 R(r ) = 0
                                                       2
                                                                                                                     (71)
                                                                       (71):
                                  Φ (ϕ ) = A cos kϕ + B sin kϕ .                                                     (72)
                                                       (71)                                          R(r ) = r . m

                                                                                              (71)
    r m(m − 1)r
     2                            m− 2
                                         + rmr   m−1
                                                       −k r =0 2 m
                                                                                               m2 − k 2 = 0 .
                                                                       (71)
                                          R(r ) = r + Dr − k . k
                                                                                                                     (73)
                (72)              (73)                             (69):
 uk (r; ϕ ) = ( Ak cos kϕ + Bk sin kϕ )                                (   k                  )
                                                                               r k + Dk r − k , k = 1,2,3,....       (74)
k =0                         :