Уравнения математической физики. Мицик М.Ф. - 13 стр.

UptoLike

Составители: 

Рубрика: 

5. .
.
   
l
. ,  
       
.
 4.
   ,       
0
=
x
, 
lx
=
. 
(
)
txu ;

   
x
  
t
.  
, 
S
x
u
kq
=
, 
S
   ,
k
.
  ,   

x

xx
+
.  ,   

x

t

( )
tS
x
txu
kQ
=
;
1
,

xx
+

t
:
( )
tS
x
txxu
kQ
+
=
;
2
.

21
QQ

t

(
)
xo

( )
txS
x
txu
kQQ
=
2
2
21
;
. (41)
    
t
   

u
( )
tot
t
u
xScuxScQQ +
== ρρ
21
, (42)

c
,
ρ
.
 (41) (42), :
( )
t
t
u
xSctxS
x
txu
k
=
ρ
2
2
;
,

0
x
xx
+
l
                 5.                                                                          .
                                                                                .

                                                                           l.                ,

                                              .



         0                                    x             x + ∆x                      l
                                                       4.
                                          ,
x = 0,                    –              x=l.                u (x; t ) −
                                            x                                           t.
             ,
                              ∂u
             q = −k              S,           S−                                                            ,
                              ∂x
k−                                                 .
                                                       ,
                 x            x + ∆x .                           ,
             x                    ∆t
                                ∂u (x; t )
                          ∆Q1 = − k        S∆t ,
                                  ∂x
                                 x + ∆x                ∆t :
                                ∂u (x + ∆ x; t )
                       ∆Q2 = −k                  S∆t .
                                      ∂x
                     ∆Q1 − ∆Q2                                                  ∆t                   o(∆ x )

                           ∂ 2 u ( x; t )
             ∆Q1 − ∆Q2 = k                S∆ x∆ t .                                                  (41)
                               ∂x 2
                                               ∆t
                                         ∆u
                                                               ∂u
             ∆Q1 − ∆Q2 = cρ S∆ x∆u = cρ S∆ x                      ∆t + o(∆t ) ,                      (42)
                                                               ∂t
     c−                                       , ρ−                                  .
                                                                (41)       (42),                 :
                 ∂ u (x; t )
                      2
                                              ∂u
             k               S∆ x∆t = cρ S∆ x    ∆t ,
                   ∂x 2
                                              ∂t