Уравнения математической физики. Мицик М.Ф. - 3 стр.

UptoLike

Составители: 

Рубрика: 



1
MM . 

.


ϕ
ϕ
ϕ +
.

uO
,

1
MM  1.

( )
ϕ
ϕ
ϕ
sinsin TT
+
.

ϕ

x

( )
22
ϕ+xO
:
( ) ( )
( )
=
+
=+=+
x
txu
x
txxu
TtgTtgTTT
;;
sinsin ϕϕϕϕϕϕ
( )
( )
x
x
txu
Tx
x
txxu
T
=
+
=
;;
22
θ
, 
10
<
.
, , -
  ,    . 
ρ
 
, 
x
ρ
, :
x
x
u
T
t
u
x
=
2
2
2
2
ρ
.

2
a
T
=
ρ
, :
2
2
2
2
2
x
u
a
t
u
=
.
.
     
( )
tx;u

  ()  
 ( 
0
=
t
).     
.
, 
( ) ( )
0t;u,0t0;u == l
. (4)
   
0
=
t
  
,   ,    .   

(
)
xf
, 
( ) ( )
x|ux;0u
0t
f
=
=
=
. (5)
 ,       
, 
( )
xϕ
. ,
:
( )
x|
t
u
0t
ϕ=
=
.
 (5) .
O
M
1
M
ϕ
ϕ
ϕ +
x
xx
+
X
u
l
( )
5
( )
5
                                                                      u
                MM 1 .

                                         .                                                  M1                  ϕ + ∆ϕ
                                                                                M
                                                                          ϕ
                           ϕ       ϕ + ∆ϕ .                     O
                                                                                   x       x+∆x                         l      X
                                       Ou           ,
                                             MM 1                                                    1.
                         T sin (ϕ + ∆ϕ ) − T sin ϕ .
                                  ϕ ∆x                                                 (
                                                                                   O ∆ x 2 + ∆ϕ        2
                                                                                                           )                           :
                                                               ∂u ( x + ∆x; t ) ∂u ( x; t ) 
T sin (ϕ + ∆ϕ ) − T sin ϕ = T ⋅ tg (ϕ + ∆ϕ ) − T ⋅ tgϕ = T                     −            =
                                                                     ∂x           ∂x 
    ∂ 2 u ( x + θ ∆ x; t )        ∂ 2 u ( x; t )
=T                         ∆x = T                ∆x ,   0 < θ < 1.
              ∂x                      ∂x
                                                      ,                               ,                                                    -
                      ,                                     .          ρ−
                                                                                                     ∂ 2u     ∂ 2u
            ,                                – ρ ∆x ,                                      : ρ ∆x         = T      ∆x .
                                                                                                     ∂t2      ∂ x2
                       T                                                                                    ∂2u      2 ∂ u
                                                                                                                         2
                         = a2 ,                                                                           :      = a        .
                       ρ                                                                                    ∂ t2       ∂ x2
                                                                                                                                   .

                                                                                                                u (x; t )
                                                                               (                                )
                  (                  t = 0 ).
                                                        .
                                                                                                                    ,
       u (0; t ) = 0, u (l ; t ) = 0 –                                                           .                          (4)
                                                                          t =0
        ,                                           ,                                                      .
                                         f (x) ,                u (x;0 ) = u | t =0 = f (x ) .                              (5)
                               ,
                                     ,                                                               ϕ (x ) .                              ,
                                                                    ∂u
                                                            :          | t = 0 = ϕ (x ) .                                   (5′)
                                                                    ∂t
                 (5)       (5′)                                                              .