ВУЗ:
Составители:
Рубрика:
1
MM .
.
ϕ
ϕ
ϕ ∆+
.
uO
,
1
MM 1.
( )
ϕ
ϕ
ϕ
sinsin TT
−
∆
+
.
ϕ
x
∆
( )
22
ϕ∆+∆xO
:
( ) ( )
( )
( )
=
∂
∂
−
∂
∆+∂
=⋅−∆+⋅=−∆+
x
txu
x
txxu
TtgTtgTTT
;;
sinsin ϕϕϕϕϕϕ
( )
( )
x
x
txu
Tx
x
txxu
T ∆
∂
∂
=∆
∂
∆+∂
=
;;
22
θ
,
10
<
<θ
.
, , -
, .
−
ρ
, –
x
∆
ρ
, :
x
x
u
T
t
u
x ∆
∂
∂
=
∂
∂
∆
2
2
2
2
ρ
.
2
a
T
=
ρ
, :
2
2
2
2
2
x
u
a
t
u
∂
∂
=
∂
∂
.
.
( )
tx;u
()
(
0
=
t
).
.
,
( ) ( )
0t;u,0t0;u == l
– . (4)
0
=
t
, , .
(
)
xf
,
( ) ( )
x|ux;0u
0t
f
=
=
=
. (5)
,
,
( )
xϕ
. ,
:
( )
x|
t
u
0t
ϕ=
∂
∂
=
.
(5) .
O
M
1
M
ϕ
ϕ
ϕ ∆+
x
xx
∆
+
X
u
l
( )
5
′
( )
5
′
u MM 1 . . M1 ϕ + ∆ϕ M ϕ ϕ ϕ + ∆ϕ . O x x+∆x l X Ou , MM 1 1. T sin (ϕ + ∆ϕ ) − T sin ϕ . ϕ ∆x ( O ∆ x 2 + ∆ϕ 2 ) : ∂u ( x + ∆x; t ) ∂u ( x; t ) T sin (ϕ + ∆ϕ ) − T sin ϕ = T ⋅ tg (ϕ + ∆ϕ ) − T ⋅ tgϕ = T − = ∂x ∂x ∂ 2 u ( x + θ ∆ x; t ) ∂ 2 u ( x; t ) =T ∆x = T ∆x , 0 < θ < 1. ∂x ∂x , , - , . ρ− ∂ 2u ∂ 2u , – ρ ∆x , : ρ ∆x = T ∆x . ∂t2 ∂ x2 T ∂2u 2 ∂ u 2 = a2 , : = a . ρ ∂ t2 ∂ x2 . u (x; t ) ( ) ( t = 0 ). . , u (0; t ) = 0, u (l ; t ) = 0 – . (4) t =0 , , . f (x) , u (x;0 ) = u | t =0 = f (x ) . (5) , , ϕ (x ) . , ∂u : | t = 0 = ϕ (x ) . (5′) ∂t (5) (5′) .