Задачи по векторному анализу. Михайлов В.К - 90 стр.

UptoLike

Рубрика: 

90
Çàäà÷è
Ïðåäñòàâèòü â öèëèíäðè÷åñêèõ êîîðäèíàòàõ ñëåäóþùèå
âåêòîðíûå ïîëÿ, çàäàííûå â äåêàðòîâûõ êîîðäèíàòàõ.
4.1. Ìàãíèòíîå ïîëå ïðÿìîãî òîêà
ρ
B
k
yx=−
ρ
2
0{,,}
.
4.2. Àçèìóòàëüíî-öèëèíäðè÷åñêîå ïîëå îáùåãî âèäà
ρ
af yx=−(){ ,,}
ρ
0
.
4.3. Ýëåêòðè÷åñêîå ïîëå ïðÿìîé íèòè
ρ
E
k
xy=
ρ
2
0{, ,}
.
4.4. Ðàäèàëüíî-öèëèíäðè÷åñêîå ïîëå îáùåãî âèäà
ρ
af xy= (){,,}
ρ
0
.
4.5. Ïðîäîëüíîå îñåñèììåòðè÷íîå (îòíîñèòåëüíî îñè z)
ïîëå
ρρ ρρ
af z
x
efz
y
ef ze
xyz
=++
11 2
(,) (,) (,)
ρ
ρ
ρ
ρ
ρ
.
4.3. Îïåðàöèè âåêòîðíîãî àíàëèçà
â êðèâîëèíåéíûõ êîîðäèíàòàõ
4.3.1. Óðàâíåíèÿ âåêòîðíûõ ëèíèé
Ïóñòü â êðèâîëèíåéíûõ êîîðäèíàòàõ (q
1
, q
2
, q
3
) çàäàíî âåê-
òîðíîå ïîëå
ρρρ ρ
a aqqqe aqqqe aqqqe=+ +
11 2 31 21 2 32 31 2 33
(, , ) (, , ) (, , )
. (4.5)
Äèôôåðåíöèàëüíûå óðàâíåíèÿ âåêòîðíûõ ëèíèé ýòîãî ïîëÿ
èìåþò âèä:
Hdq
a
Hdq
a
Hdq
a
11
1
22
2
33
3
==
,
                                    Çàäà÷è
     • Ïðåäñòàâèòü â öèëèíäðè÷åñêèõ êîîðäèíàòàõ ñëåäóþùèå
âåêòîðíûå ïîëÿ, çàäàííûå â äåêàðòîâûõ êîîðäèíàòàõ.
       4.1. Ìàãíèòíîå ïîëå ïðÿìîãî òîêà
                                ρ k
                                B = 2 {− y, x,0} .
                                   ρ
         4.2. Àçèìóòàëüíî-öèëèíäðè÷åñêîå ïîëå îáùåãî âèäà
                        ρ
                        a = f ( ρ ){− y, x ,0} .
         4.3. Ýëåêòðè÷åñêîå ïîëå ïðÿìîé íèòè
                                 ρ k
                                 E = 2 {x, y,0} .
                                    ρ
         4.4. Ðàäèàëüíî-öèëèíäðè÷åñêîå ïîëå îáùåãî âèäà
                         ρ
                         a = f ( ρ ){x , y,0} .
         4.5. Ïðîäîëüíîå îñåñèììåòðè÷íîå (îòíîñèòåëüíî îñè z)
              ïîëå
                 ρ             xρ              yρ               ρ
                 a = f1( ρ, z ) ex + f1( ρ, z ) ey + f2 ( ρ, z )ez .
                               ρ               ρ


                   4.3. Îïåðàöèè âåêòîðíîãî àíàëèçà
                     â êðèâîëèíåéíûõ êîîðäèíàòàõ


                   4.3.1. Óðàâíåíèÿ âåêòîðíûõ ëèíèé
    Ïóñòü â êðèâîëèíåéíûõ êîîðäèíàòàõ (q1, q2, q3) çàäàíî âåê-
òîðíîå ïîëå
            ρ                 ρ                    ρ                   ρ
           a = a1(q1, q2, q3 )e1 + a2(q1, q2 , q3 )e2 + a3(q1, q2, q3 )e3 . (4.5)
    Äèôôåðåíöèàëüíûå óðàâíåíèÿ âåêòîðíûõ ëèíèé ýòîãî ïîëÿ
èìåþò âèä:
                           H1dq1 H2dq2 H3dq3
                                =     =
                            a1    a2    a3 ,



                                        90