Качество и конкурентоспособность продукции и процессов. Минько Э.В - 82 стр.

UptoLike

82
Необходимость применения методов математической статистики
при оценке ПКП обусловлена тем, что в большинстве случаев значе$
ния ПКП являются случайными величинами вследствие воздействия
многочисленных случайных факторов в процессе производства и эк$
сплуатации продукции. В связи с этим в практике оценки качества
продукции возникает ряд характерных статистических задач:
– установить характер и причину различия показателей качества
сравниваемых вариантов продукции;
– определить коэффициент корреляции (вероятностной связи)
между ПКП;
– определить параметры зависимости исследуемого ПКП от чис$
ленных характеристик влияющих на него факторов;
– определить влияние различных факторов на изменение ПКП;
– определить точность и устойчивость технологического процесса
и их влияние на закон распределения формируемого этим процессом
ПКП.
Для решения этих и других подобных задач оценки качества про$
дукции применяются методы теории вероятностей и математической
статистики, среди которых наиболее характерными являются: то$
чечное и интервальное оценивание параметров распределения пока$
зателей качества; проверка гипотез; дисперсионный анализ; корре$
ляционный анализ; регрессионный анализ; анализ временных ря$
дов, последовательностей процессов и др.
Точечное и интервальное оценивание параметров закона распре$
деления случайных величин ПКП хорошо иллюстрируется оценкой
таких показателей, как наработка до отказа неремонтируемых тех$
нических устройств, срок сохранения быстро портящейся пищевой и
фармацевтической продукции, прочностные характеристики мате$
риалов при различных способах приложения нагрузки, прочность на
пробой изоляционных материалов и т. п.
Статистическая оценка (точечная и интервальная) указанных
ПКП в значительной степени зависит от выбора вида его закона рас$
пределения, который определяется характером физико$химических
процессов в структуре материалов. Выявление и обоснование закона
распределения ПКП вызывает необходимость проведения статисти$
ческих исследований. В составе многочисленных методов точечного
оценивания параметров закона распределения ПКП наибольшее при$
менение получили метод максимума правдоподобия, метод момен$
тов, байесовское оценивание и др.
Методы интервального оценивания позволяют установить ин$
тервал, в котором с заданной доверительной вероятностью находят$
ся значения исследуемых параметров распределения ПКП, что игра$