ВУЗ:
Составители:
Рубрика:
[p(x)X
0
(x)]
0
+ [λr(x) − q(x)]X(x) = 0, a < x < b, (1)
p(x) q(x) r(x) x p(x)
p
0
(x) q(x) r(x) p(x) r(x) λ
x
p(x) = 0
x
C
(2)
(a, b)
X|
x→a+0
= 0, X|
x→b−0
= 0.
X(a) = 0, X(b) = 0;
X
0
(a) = 0, X
0
(b) = 0;
X
0
(a) − h
a
X(a) = 0, X
0
(b) + h
b
X(b) = 0, h
a
, h
b
≥ 0;
Çàäà÷à Øòóðìà-Ëèóâèëëÿ Ðàññìîòðèì îáûêíîâåííîå îäíîðîäíîå ëèíåéíîå äèôôåðåíöèàëüíîå óðàâíåíèå âòîðîãî ïîðÿäêà [p(x)X 0 (x)]0 + [λr(x) − q(x)]X(x) = 0, a < x < b, (1) ãäå p(x), q(x), r(x) - âåùåñòâåííûå ôóíêöèè îò x. Ïðåäïîëàãàåòñÿ, ÷òî p(x), p0 (x), q(x), r(x) íåïðåðûâíû â (a,b); p(x) è r(x) ïîëîæèòåëüíû â (a,b); λ - ïàðàìåòð, ïðèíèìàþùèé ëþáûå çíà÷åíèÿ. Êîíöû èíòåðâàëà (a,b) ìîãóò áûòü êàê îáûêíîâåííûìè òî÷êàìè, òàê è îñîáûìè (ñèíãóëÿðíûìè). Íàïîìíèì, ÷òî åñëè ïðè íåêîòîðîì x õîòÿ áû îäèí èç êîýôôèöèåíòîâ óðàâíåíèÿ (2) èìååò áåñêîíå÷íûé ðàçðûâ èëè p(x) = 0, òî ãîâîðÿò, ÷òî êîýôôèöèåíòû óðàâíåíèÿ èìåþò îñîáåííîñòü â òî÷êå x. Ãðàíè÷íàÿ çàäà÷à, â êîòîðîé ðåøåíèÿ óðàâíåíèÿ (2) óäîâëåòâîðÿþò îä- íîðîäíûì ëèíåéíûì ãðàíè÷íûì óñëîâèÿì ñ âåùåñòâåííûìè êîýôôèöèåí- òàìè íàçûâàþò çàäà÷åé Øòóðìà-Ëèóâèëëÿ. Òàêèì îáðàçîì, ïîä çàäà÷åé Øòóðìà-Ëèóâèëëÿ ïîíèìàåòñÿ ñëåäóþùàÿ çàäà÷à: íàéòè ðåøåíèå óðàâíå- íèÿ (2), ïðèíàäëåæàùåå êëàññó C (2) (a, b) è óäîâëåòâîðÿþùèå íåêîòîðûì îäíîðîäíûì ãðàíè÷íûì óñëîâèÿì, çàäàííûì íà êîíöàõ èíòåðâàëà (a,b). Ïðèìåðîì òàêèõ óñëîâèé ìîãóò áûòü óñëîâèÿ X|x→a+0 = 0, X|x→b−0 = 0. Ðàçëè÷àþò çàäà÷è äâóõ òèïîâ - ðåãóëÿðíóþ çàäà÷ó è ñèíãóëÿðíóþ çàäà- ÷ó. Çàäà÷à Øòóðìà-Ëèóâèëëÿ íàçûâàåòñÿ ðåãóëÿðíîé, åñëè èíòåðâàë (a,b) êîíå÷åí, êîíöû èíòåðâàë (a,b) - îáûêíîâåííûå òî÷êè ðàññìàòðèâàåìîãî óðàâíåíèÿ. Çàäà÷à íàçûâàåòñÿ ñèíãóëÿðíîé, åñëè õîòÿ áû îäíî èç ýòèõ óñëîâèé íå âûïîëíåíî. Ñèíãóëÿðíàÿ çàäà÷à ìîæåò áûòü ñ îäíèì èëè äâó- ìÿ ñèíãóëÿðíûìè êîíöàìè. Õàðàêòåð îäíîðîäíûõ ãðàíè÷íûõ óñëîâèé ðå- ãóëÿðíîé è ñèíãóëÿðíîé çàäà÷ ðàçíûé. Ñôîðìóëèðóåì òèïîâûå ãðàíè÷íûå óñëîâèÿ.  ðåãóëÿðíîé çàäà÷å ðàç- ëè÷àþò ãðàíè÷íûå óñëîâèÿ ïåðâîãî ðîäà X(a) = 0, X(b) = 0; ãðàíè÷íûå óñëîâèÿ âòîðîãî ðîäà X 0 (a) = 0, X 0 (b) = 0; ãðàíè÷íûå óñëîâèÿ òðåòüåãî ðîäà X 0 (a) − ha X(a) = 0, X 0 (b) + hb X(b) = 0, ha , hb ≥ 0; 3