Задача Штурма-Лиувилля. Молчанова Л.А. - 5 стр.

UptoLike

Составители: 

Рубрика: 

α β λ X(x)
x λ
λ
f(λ)
f(λ) =
X
n=0
C
n
λ
n
=
X
n=0
f
(n)
(0)
n!
λ
n
, |λ| < .
x = c x = a
ϕ(x, λ) ψ(x, λ)
ϕ(x, λ) : X(a) = 1, X
0
(a) = 0,
ψ(x, λ) : X(a) = 0, X
0
(a) = 1.
ϕ(a, λ) = 1, ϕ
0
(a, λ) = 0,
ψ(a, λ) = 0, ψ
0
(a, λ) = 1. (2)
ϕ(x, λ) ψ(x, λ) C
(2)
(a, b)
x λ
X(x, λ) = (x, λ) + Bψ(x, λ), A, B = const. (3)
A B λ
(a, λ) + Bψ(a, λ) = 0,
(b, λ) + Bψ(b, λ) = 0,
A = 0, ψ(b, λ) = 0.
0
(a, λ) + Bψ
0
(a, λ) = 0,
0
(b, λ) + Bψ
0
(b, λ) = 0,
B = 0, ϕ
0
(b, λ) = 0.
Åñëè ÷èñëà α,β íå çàâèñÿò îò ïàðàìåòðà λ, òî ðåøåíèå X(x) ïðè ôèêñèðî-
âàííîì x ÿâëÿåòñÿ öåëîé ôóíêöèåé îò λ.
   Ïîä öåëîé ôóíêöèåé êîìïëåêñíîãî ïåðåìåííîãî λ ïîäðàçóìåâàåòñÿ òà-
êàÿ ôóíêöèÿ, êîòîðàÿ ðàçëàãàåòñÿ â ðÿä Òåéëîðà âî âñåé îáëàñòè (ðàäèóñ
ñõîäèìîñòè ðàâåí ∞), òî åñòü f (λ) - öåëàÿ ôóíêöèÿ, åñëè
                         ∞
                         X                X∞
                                              f (n) (0) n
               f (λ) =         C n λn =                λ , |λ| < ∞.
                         n=0              n=0
                                                 n!

    êà÷åñòâå òî÷êè x = c âîçüìåì ãðàíè÷íóþ òî÷êó x = a. Òîãäà ñóùå-
ñòâóþò äâà èíòåãðàëà ϕ(x, λ) è ψ(x, λ), óäîâëåòâîðÿþùèå óñëîâèÿì

                     ϕ(x, λ) : X(a) = 1, X 0 (a) = 0,

                     ψ(x, λ) : X(a) = 0, X 0 (a) = 1.
Ìîæíî çàïèñàòü
                          ϕ(a, λ) = 1, ϕ0 (a, λ) = 0,
                          ψ(a, λ) = 0, ψ 0 (a, λ) = 1.                (2)
                                               (2)
Ïðè ýòîì èíòåãðàëû ϕ(x, λ), ψ(x, λ) ∈ C (a, b) è ÿâëÿþòñÿ, ïðè ôèêñèðî-
âàííîì x, öåëûìè ôóíêöèÿìè îò λ. Ýòè ôóíêöèè ëèíåéíî íåçàâèñèìû è
íàçûâàþòñÿ ôóíäàìåíòàëüíîé ñèñòåìîé ðåøåíèé Øòóðìà-Ëèóâèëëÿ.
   Îáùèé èíòåãðàë óðàâíåíèÿ Øòóðìà-Ëèóâèëëÿ (1) ìîæíî ïðåäñòàâèòü
â âèäå
              X(x, λ) = Aϕ(x, λ) + Bψ(x, λ), A, B = const.          (3)
   ×èñëà A, B è λ âûáèðàþòñÿ òàê, ÷òîáû ïîëó÷åííîå ðåøåíèå îòâå÷àëî
ãðàíè÷íûì óñëîâèÿì.  ñëó÷àå óñëîâèé ïåðâîãî ðîäà

                          Aϕ(a, λ) + Bψ(a, λ) = 0,

                          Aϕ(b, λ) + Bψ(b, λ) = 0,
èëè
                               A = 0, ψ(b, λ) = 0.
    ñëó÷àå óñëîâèé âòîðîãî ðîäà

                         Aϕ0 (a, λ) + Bψ 0 (a, λ) = 0,

                          Aϕ0 (b, λ) + Bψ 0 (b, λ) = 0,
èëè
                               B = 0, ϕ0 (b, λ) = 0.

                                           5