ВУЗ:
Составители:
Рубрика:
16
мы при различных фиксированных положениях цилиндров. Значения массы и
радиуса каждого цилиндра известны и составляют ~320 г и ~19 мм соответ-
ственно. Момент внешней силы задается путем подвешивания к нити груза из-
вестной массы (в пределах 3÷8 г). Из каждого измеренного углового ускорения
платформы с цилиндрами вычисляется значение момента инерции J цилиндров
при их заданном положении на платформе. Моменты инерции пустой платфор-
мы и накладки в данном эксперименте считаются известными.
Рис. 2.9
Первое измерение проводится, когда оба цилиндра расположены в центре
платформы. В течение времени трех полных оборотов платформы записывает-
ся зависимость ϕ(t). При этом на мониторе отображается график зависимости
)(t
ϕ
&
, автоматически определяется его угловой коэффициент, из которого вычис-
ляется угловое ускорение платформы с цилиндрами, находится момент инер-
ции цилиндров J, и на монитор выводится полученная точка, лежащая на зави-
симости J(a). Проводя т акие измерения при не скольких различных значениях
расстояния a (всего не менее трех), можно получить набор точек, пригодный
для дальнейшей обработки по МНК. В результате обработки строится график
квадратичной зависимости J(a). Из свободного члена этой зависимости вычис-
ляется величина момента инерции цилиндра относительно оси, проходящей
через его центр масс, а из коэффициента при a
2
указанной зависимости – масса
цилиндра. Знание этих величин дает возможность вычислить радиус цилиндра.
Найденные таким способом значения массы и радиуса цилиндра выводятся на
монитор с указанием их погрешностей. Здесь же для сравнения приводятся ре-
зультаты прямых измерений этих величин (рис. 2.10). Таким образом, осуще-
ствляется количественная проверка теоремы Гюйгенса–Штейнера.
После проведения обработки экспериментальных данных можно поо черед-
но отобража ть на мониторе графики квадра тичной зависимости J(a) и линейной
зависимости J(a
2
), чт о создает дополнительные удобства при демонстрации.
мы при различных фиксированных положениях цилиндров. Значения массы и радиуса каждого цилиндра известны и составляют ~320 г и ~19 мм соответ- ственно. Момент внешней силы задается путем подвешивания к нити груза из- вестной массы (в пределах 3÷8 г). Из каждого измеренного углового ускорения платформы с цилиндрами вычисляется значение момента инерции J цилиндров при их заданном положении на платформе. Моменты инерции пустой платфор- мы и накладки в данном эксперименте считаются известными. Рис. 2.9 Первое измерение проводится, когда оба цилиндра расположены в центре платформы. В течение времени трех полных оборотов платформы записывает- ся зависимость ϕ(t). При этом на мониторе отображается график зависимости ϕ& (t ), автоматически определяется его угловой коэффициент, из которого вычис- ляется угловое ускорение платформы с цилиндрами, находится момент инер- ции цилиндров J, и на монитор выводится полученная точка, лежащая на зави- симости J(a). Проводя такие измерения при нескольких различных значениях расстояния a (всего не менее трех), можно получить набор точек, пригодный для дальнейшей обработки по МНК. В результате обработки строится график квадратичной зависимости J(a). Из свободного члена этой зависимости вычис- ляется величина момента инерции цилиндра относительно оси, проходящей через его центр масс, а из коэффициента при a2 указанной зависимости – масса цилиндра. Знание этих величин дает возможность вычислить радиус цилиндра. Найденные таким способом значения массы и радиуса цилиндра выводятся на монитор с указанием их погрешностей. Здесь же для сравнения приводятся ре- зультаты прямых измерений этих величин (рис. 2.10). Таким образом, осуще- ствляется количественная проверка теоремы Гюйгенса–Штейнера. После проведения обработки экспериментальных данных можно поочеред- но отображать на мониторе графики квадратичной зависимости J(a) и линейной зависимости J(a2), что создает дополнительные удобства при демонстрации. 16
Страницы
- « первая
- ‹ предыдущая
- …
- 14
- 15
- 16
- 17
- 18
- …
- следующая ›
- последняя »