Приближение заданного распределения поверхностного тока для расчета прямоугольных микрополосковых антенн. Нечаев Ю.Б. - 3 стр.

UptoLike

Составители: 

Ki_dljZevgh_ij_^klZ\e_gb_iheybaemq_gbylhdZgZ
ih\_joghklbwdjZgbjh\Zggh]hkehyfZ]gblh^bwe_dljbdZ
<\_^_fkbkl_fmdhhj^bgZllZdqlh[uhkv
OZ
[ueZi_ji_g^bdmeyjgZ]jZgbpZf
fZ]gblh^bwe_dljbdZ Z gZqZeh dhhj^bgZl gZoh^behkv \ iehkdhklb b ^_Zevgh
ijh\h^ys_]h wdjZgZjbk BaemqZl_eb FI: jZkiheh`_gu \ iehkdhklb
hz =
b
ij_^klZ\eyxlkh[hcb^_Zevg hijh\h^ysb_[_kdhg_qg hlhgdb_mqZkldbgZih\_joghklb
fZ]gblh^bwe_dljbdZ ihdhlhjuffh`_l l_qvlhd GZc^_f ihe_ baemq_gbywlh]hlhdZ
ij_^iheZ]Zyqlhba\_klgZ_]hih\_joghklgZyiehlghklv
Jbk
< dZ`^hc ba h[eZkl_c ijhkljZgkl\Z k ihklhyggufb agZq_gbyfb
^bwe_dljbq_kdhc b fZ]gblghc ijhgbpZ_fhklb ihe_ we_dljhfZ]gblghc \hegu fh`gh
ij_^klZ\blv\\b^_kmi_jihabpbbL?
-
bLF
-
\hegIhemqbfke_^mxs__ij_^klZ\e_gb_
Imklvihe_we_dljhfZ]gblghc\hegubf__l\h[eZklbkihklhyggufbagZq_gbyfb
ε
b
µ
aZ\bkbfhklvhldhhj^bgZlu
z
\\b^_
zri
e
Lh]^Z\mjZ\g_gbyoFZdk\_eeZ
EiHHiE
&&&&
εεωµµω
00
,,,
==
(1)
hi_jZlhj
m^h[ghij_^klZ\blv\\b^_
zt
e
=i
&
=
Zwe_dljbq_kdh_bfZ]gblgh_
ihe_
-
\ \b^_ kmi_jihabpbb dhfihg_gl gZijZ\e_gguo iZjZee_evgh hkb
OZ
b
i_ji_g^bdmeyjguodg_c
zztzzt
HeHHEeEE
&
&&
&
&&
+=+= ,
Ihke_ jy^Z ij_h[jZah\Zgbc ba mjZ\g_gbcfh`gh ihemqblv \ujZ`_gby ^ey
ihi_j_qguo hlghkbl_evgh hkb
OZ
dhfihg_g l ihe_c q_j_a iZjZee_evgu_ _c
khklZ\eyxsb_
[]
ztz
r
zt
r
t
He
zki
E
=i
E
+=
,
2
0
2
&
&
χ
µ
χ
(2)
              Ki_dljZevgh_ij_^klZ\e_gb_iheybaemq_gbylhdZgZ
             ih\_joghklbwdjZgbjh\Zggh]hkehyfZ]gblh^bwe_dljbdZ


       <\_^_f kbkl_fm dhhj^bgZl lZd qlh[u hkv OZ[ueZi_ji_g^bdmeyjgZ]jZgbpZf
fZ]gblh^bwe_dljbdZ Z gZqZeh dhhj^bgZl gZoh^behkv \ iehkdhklb b^_Zevgh
ijh\h^ys_]h wdjZgZ jbk  BaemqZl_eb FI: jZkiheh`_gu \ iehkdhklb z = h  b
ij_^klZ\eyxlkh[hcb^_Zevghijh\h^ysb_[_kdhg_qghlhgdb_mqZkldbgZih\_joghklb
fZ]gblh^bwe_dljbdZ ih dhlhjuf fh`_l l_qv lhd GZc^_f ihe_ baemq_gby wlh]h lhdZ
ij_^iheZ]Zyqlhba\_klgZ_]hih\_joghklgZyiehlghklv




                                             Jbk
       <   dZ`^hc   ba    h[eZkl_c     ijhkljZgkl\Z    k   ihklhyggufb   agZq_gbyfb
^bwe_dljbq_kdhc b fZ]gblghc ijhgbpZ_fhklb ihe_ we_dljhfZ]gblghc \hegu fh`gh
ij_^klZ\blv\\b^_kmi_jihabpbbL?-bLF-\hegIhemqbfke_^mxs__ij_^klZ\e_gb_
Imklvihe_we_dljhfZ]gblghc\hegubf__l\h[eZklbkihklhyggufbagZq_gbyfb ε b

µ aZ\bkbfhklvhldhhj^bgZlu z \\b^_ e −i r z Lh]^Z\mjZ\g_gbyoFZdk\_eeZ
                    &               &                 &            &
                 ∇, E = −i ω µ 0 µ H ,            ∇, H = i ω ε 0 ε E                  (1)
                                                      &
hi_jZlhj ∇ m^h[ghij_^klZ\blv\\b^_ ∇ = ∇ t − i = e z  Zwe_dljbq_kdh_bfZ]gblgh_
ihe_  -  \ \b^_ kmi_jihabpbb dhfihg_gl gZijZ\e_gguo iZjZee_evgh hkb OZ b
i_ji_g^bdmeyjguodg_c
                            & & &                &   &     &
                            E = Et + e z E z ,   H = H t + ez H z
Ihke_ jy^Z ij_h[jZah\Zgbc ba mjZ\g_gbc   fh`gh ihemqblv \ujZ`_gby ^ey
ihi_j_qguo hlghkbl_evgh hkb OZ dhfihg_gl ihe_c q_j_a iZjZee_evgu_ _c
khklZ\eyxsb_
                       &      i=           i k µ z0 &
                       Et = −      ∇t Ez +          [e z , ∇ t H z ]                   (2)
                              χ r2            χ r2