ВУЗ:
Составители:
Рубрика:
[]
zt
r
ztz
r
t
H
=
i
Ee
z
ki
H
∇−∇−=
22
0
,
χ
χ
ε
&
&
, (3)
]^_
00
µεω
=
k
,
222
=
k
r
−=
µε
χ
, Hfz ,120
000
πεµ
==
.
Ba\ujZ`_gbcbke_^m_lqlhihe_we_dljhfZ]gblghc\heguij_^klZ\bfh
\\b^_kmi_jihabpbbL?
-
\hegumdhlhjhc
0=
z
E
bLF
-
\hegumdhlhjhc
0=
z
H
.
We_dljhfZ]gblgh_ ihe_ \ h[eZklyobkf jbk ij_^klZ\bf \ \b^_
kmi_jihabpbb iehkdbo L?
-
b LF
-
\heg>eywlh]h\u[_j_f\ dZq_kl\_ ihl_gpbZevguo
nmgdpbc
z
E
b
z
H
b\dZ`^hcbah[eZkl_c\havf_fbo\\b^_bgl_]jZeh\Nmjv_
()()
yxyx
z
z
z
z
ddyxi
zH
zE
H
E
χ
χ
χ
χ
γ
γ
π
+−
=
∫∫
∞
∞−
exp
sin
~
cos
~
4
1
2
1
2
1
2
1
1
(4)
()
()
()
yxyx
z
z
z
z
ddhziyxi
H
E
H
E
χ
χ
γ
χ
χ
π
−−+−
=
∫∫
∞
∞−
1
2
2
2
2
2
exp
~
~
4
1
(5)
]^_
22
1
r
k
χ
γ
−=
,
22
2
r
k
χ
µεγ
−=
, 0Im
2,1
≤
γ
,
222
yxr
χ
χ
χ
+=
Ihe_
m^h\e_l\hjy_l]jZgbqghfmmkeh\bx
0
1
=
t
E
&
ijb
0
=
z
.
Ba]jZgbqgh]hmkeh\by
21
tt
EE
&&
=
\iehkdhklb
hz
=
ke_^mxljZ\_gkl\Z
2
22
1
1
~
sin
~
zz
E
h
iE
γγ
γ
= , (6)
2
2
1
~
sin
1
~
zz
H
h
H
γµ
= . (7)
FZ]gblgh_ ihe_ gZ mqZkldZo iehkdhklb
hz
=
]^_ jZkiheh`_gu baemqZl_eb
ij_l_ji_\Z_ljZaju\jZ\guciehlghklbih\_joghklgh]hlhdZ
[
]
JHHe
ttz
&&&
&
=−
12
, . (8)
Ij_^klZ\bfiehlghklvih\_joghklgh]hlhdZ\\b^_bgl_]jZeZNmjv_
()()
yxyx
ddyxiJJ
χ
χ
χ
χ
π
+−=
∫∫
∞
∞−
exp
~
4
1
2
&&
. (9)
Bkihevamy mkeh\b_b nhjfmeu ihemqbf ki_dljZevgu_ Zfieblm^u ihey
baemq_gby\h[eZklbkfjbk
()
()
hctgik
JJz
E
yyxxa
z
212
2
2
~~
~
γγεγ
χ
χ
γ
−
+
=
, (10)
& ikε & i= Ht = − [e z , ∇ t E z ]− ∇t H z , (3) z 0 χ r2 χ r2 ]^_ k = ω ε 0 µ 0 , χ r2 = k 2 ε µ − = 2 , z 0 = µ 0 ε 0 = 120 π , Hf . Ba\ujZ`_gbc b ke_^m_lqlhihe_we_dljhfZ]gblghc\heguij_^klZ\bfh \\b^_kmi_jihabpbbL?-\hegumdhlhjhc E z = 0 bLF-\hegumdhlhjhc H z = 0 . We_dljhfZ]gblgh_ ihe_ \ h[eZklyo b kf jbk ij_^klZ\bf \ \b^_ kmi_jihabpbb iehkdbo L?- b LF-\heg >ey wlh]h \u[_j_f \ dZq_kl\_ ihl_gpbZevguo nmgdpbc E z b H z b\dZ`^hcbah[eZkl_c\havf_fbo\\b^_bgl_]jZeh\Nmjv_ ∞ ~1 E 1z E z 1 = 1 ∫ ∫ ~1 z cos γ 2 ( ( exp − i χ x x + χ y y ) ) dχ x dχ y (4) H z 4π 2 −∞ H z sin γ 2 z ∞ ~2 E z2 E 2 = 1 ∫ ∫ z ( ( ) ) ~ 2 exp − i χ x x + χ y y − i γ 1 (z − h ) dχ x dχ y (5) H z 4π 2 −∞ H z ]^_ γ 1 = k 2 − χ r2 , γ 2 = k 2 ε µ − χ r2 , Im γ 1, 2 ≤ 0 , χ r2 = χ x2 + χ 2y Ihe_ & m^h\e_l\hjy_l]jZgbqghfmmkeh\bx E t1 = 0 ijb z = 0 . & & Ba]jZgbqgh]hmkeh\by E t1 = E t2 \iehkdhklb z = h ke_^mxljZ\_gkl\Z ~ γ1 ~ E 1z = i E z2 , (6) γ 2 sin γ 2 h ~ 1 ~ H 1z = H z2 . (7) µ sin γ 2 h FZ]gblgh_ ihe_ gZ mqZkldZo iehkdhklb z = h ]^_ jZkiheh`_gu baemqZl_eb ij_l_ji_\Z_ljZaju\jZ\guciehlghklbih\_joghklgh]hlhdZ & & [ & & e z , H t2 − H t1 = J . ] (8) Ij_^klZ\bfiehlghklvih\_joghklgh]hlhdZ\\b^_bgl_]jZeZNmjv_ ∞ & ~& J= 1 ∫∫ ( ( J exp − i χ x x + χ y y ) ) dχ x dχ y . (9) 4π 2 −∞ Bkihevamy mkeh\b_ b nhjfmeu ihemqbf ki_dljZevgu_ Zfieblm^u ihey baemq_gby\h[eZklb kfjbk ( ~ ~ 2 za γ 2 χ x J x + χ y J y Ez = ~ , ) (10) k (γ 2 − i ε γ 1 ctg γ 2 h )
Страницы
- « первая
- ‹ предыдущая
- …
- 2
- 3
- 4
- 5
- 6
- …
- следующая ›
- последняя »