Приближение заданного распределения поверхностного тока для расчета прямоугольных микрополосковых антенн. Нечаев Ю.Б. - 4 стр.

UptoLike

Составители: 

[]
zt
r
ztz
r
t
H
=
i
Ee
z
ki
H
=
22
0
,
χ
χ
ε
&
&
, (3)
]^_
00
µεω
=
k
,
222
=
k
r
=
µε
χ
, Hfz ,120
000
πεµ
==
.
Ba\ujZ`_gbcbke_^m_lqlhihe_we_dljhfZ]gblghc\heguij_^klZ\bfh
\\b^_kmi_jihabpbbL?
-
\hegumdhlhjhc
0=
z
E
bLF
-
\hegumdhlhjhc
0=
z
H
.
We_dljhfZ]gblgh_ ihe_ \ h[eZklyobkf jbk ij_^klZ\bf \ \b^_
kmi_jihabpbb iehkdbo L?
-
b LF
-
\heg>eywlh]h\u[_j_f\ dZq_kl\_ ihl_gpbZevguo
nmgdpbc
z
E
b
z
H
b\dZ`^hcbah[eZkl_c\havf_fbo\\b^_bgl_]jZeh\Nmjv_
()()
yxyx
z
z
z
z
ddyxi
zH
zE
H
E
χ
χ
χ
χ
γ
γ
π
+
=
∫∫
exp
sin
~
cos
~
4
1
2
1
2
1
2
1
1
(4)
()
()
()
yxyx
z
z
z
z
ddhziyxi
H
E
H
E
χ
χ
γ
χ
χ
π
+
=
∫∫
1
2
2
2
2
2
exp
~
~
4
1
(5)
]^_
22
1
r
k
χ
γ
=
,
22
2
r
k
χ
µεγ
=
, 0Im
2,1
γ
,
222
yxr
χ
χ
χ
+=
Ihe_
m^h\e_l\hjy_l]jZgbqghfmmkeh\bx
0
1
=
t
E
&
ijb
0
=
z
.
Ba]jZgbqgh]hmkeh\by
21
tt
EE
&&
=
\iehkdhklb
hz
=
ke_^mxljZ\_gkl\Z
2
22
1
1
~
sin
~
zz
E
h
iE
γγ
γ
= , (6)
2
2
1
~
sin
1
~
zz
H
h
H
γµ
= . (7)
FZ]gblgh_ ihe_ gZ mqZkldZo iehkdhklb
hz
=
]^_ jZkiheh`_gu baemqZl_eb
ij_l_ji_\Z_ljZaju\jZ\guciehlghklbih\_joghklgh]hlhdZ
[
JHHe
ttz
&&&
&
=
12
, . (8)
Ij_^klZ\bfiehlghklvih\_joghklgh]hlhdZ\\b^_bgl_]jZeZNmjv_
()()
yxyx
ddyxiJJ
χ
χ
χ
χ
π
+=
∫∫
exp
~
4
1
2
&&
. (9)
Bkihevamy mkeh\b_b nhjfmeu   ihemqbf ki_dljZevgu_ Zfieblm^u ihey
baemq_gby\h[eZklbkfjbk
()
()
hctgik
JJz
E
yyxxa
z
212
2
2
~~
~
γγεγ
χ
χ
γ
+
=
, (10)
                            &       ikε &                     i=
                            Ht = −          [e z , ∇ t E z ]−      ∇t H z ,                                     (3)
                                   z 0 χ r2                   χ r2

]^_ k = ω ε 0 µ 0 , χ r2 = k 2 ε µ − = 2 , z 0 = µ 0 ε 0 = 120 π , Hf .

       Ba\ujZ`_gbc  b  ke_^m_lqlhihe_we_dljhfZ]gblghc\heguij_^klZ\bfh
\\b^_kmi_jihabpbbL?-\hegumdhlhjhc E z = 0 bLF-\hegumdhlhjhc H z = 0 .
       We_dljhfZ]gblgh_ ihe_ \ h[eZklyo  b   kf jbk  ij_^klZ\bf \ \b^_
kmi_jihabpbb iehkdbo L?- b LF-\heg >ey wlh]h \u[_j_f \ dZq_kl\_ ihl_gpbZevguo
nmgdpbc E z b H z b\dZ`^hcbah[eZkl_c\havf_fbo\\b^_bgl_]jZeh\Nmjv_
                                 ∞          ~1
           E 1z                      E              z 
            1 =
                      1
                                 ∫ ∫      ~1
                                             z cos γ 2              ( (
                                                              exp − i χ x x + χ y y   ) ) dχ x dχ y            (4)
            H z  4π 2     −∞
                                          H z sin γ 2   z 

                                 ∞         ~2 
          E z2                      E
           2 =
                     1
                             ∫ ∫            z       ( (                  )                 )
                                         ~ 2  exp − i χ x x + χ y y − i γ 1 (z − h ) dχ x dχ y                (5)
           H z  4π 2     −∞
                                         H z 

]^_ γ 1 = k 2 − χ r2 , γ 2 = k 2 ε µ − χ r2                , Im γ 1, 2 ≤ 0 ,     χ r2 = χ x2 + χ 2y     Ihe_  
                                    &
m^h\e_l\hjy_l]jZgbqghfmmkeh\bx E t1 = 0 ijb z = 0 .
                             &      &
      Ba]jZgbqgh]hmkeh\by E t1 = E t2 \iehkdhklb z = h ke_^mxljZ\_gkl\Z

                                        ~               γ1       ~
                                        E 1z = i                 E z2 ,                                         (6)
                                                   γ 2 sin γ 2 h
                                         ~             1       ~
                                         H 1z =                H z2 .                                           (7)
                                                   µ sin γ 2 h
       FZ]gblgh_ ihe_ gZ mqZkldZo iehkdhklb z = h   ]^_ jZkiheh`_gu baemqZl_eb
ij_l_ji_\Z_ljZaju\jZ\guciehlghklbih\_joghklgh]hlhdZ
                               &     &
                                            [
                                            &      &
                               e z , H t2 − H t1 = J .          ]                                               (8)
       Ij_^klZ\bfiehlghklvih\_joghklgh]hlhdZ\\b^_bgl_]jZeZNmjv_
                                        ∞
                    &                       ~&
                    J=
                             1
                                       ∫∫            ( (
                                            J exp − i χ x x + χ y y       ) ) dχ x dχ y .                       (9)
                           4π 2        −∞

Bkihevamy mkeh\b_   b nhjfmeu     ihemqbf ki_dljZevgu_ Zfieblm^u ihey
baemq_gby\h[eZklb kfjbk 
                                                     ( ~
                                     ~ 2 za γ 2 χ x J x + χ y J y
                                     Ez =
                                                                  ~
                                                                       ,
                                                                           )                                  (10)
                                          k (γ 2 − i ε γ 1 ctg γ 2 h )