Приближение заданного распределения поверхностного тока для расчета прямоугольных микрополосковых антенн. Нечаев Ю.Б. - 6 стр.

UptoLike

Составители: 

Dhfie_dkgZyfhsghklvbaemq_gbyfbdjhihehkdh\hcZgl_ggu
Kj_^gyy ih \j_f_gb dhfie_dkgZy fhsghklv baemq_gby fbdjhihehkdh\hc
Zgl_gguhij_^_ey_lky\ujZ`_gb_f
=
V
VdjEP
&
&
2
1
, (16)
]^_
V
-
h[eZklv \ dhlhjhc khkj_^hlhq_gu lhdb k h[t_fghc iehlghklvx
j
&
.
Ij_^iheZ]Zy qlh lhd l_q_l lhevdh ih ih\_joghklb [_kdhg_qgh lhgdbo baemqZl_e_c b
bf__l ih\_joghklgmx iehlghklv
J
&
i_j_c^_f hl h[t_fgh]h d ih\_joghklghfm
bgl_]jZem
=
S
t
SdJEP
&&
2
1
, (17)
]^_
S
-
qZklv iehkdhklb
hz
=
aZgylZy fbdjhihehkdh\ufb baemqZl_eyfb <
jZkkfZljb\Z_fhf kemqZ_ lhd i_j_^Z_l k\hx wg_j]bx ihex ihwlhfm j_ZevgZy qZklv
ih\_joghklgh]h \  b h[t_fgh]h \  bgl_]jZeh\ hljbpZl_evgZ AgZd fbgmk \
ijZ\hc qZklb  b  h[_ki_qb\Z_l \uiheg_gb_ mkeh\by
0Re
>
P
I_j_oh^y d
ki_dljZevgufZfieblm^Zfihemqbf
yxt
ddJEP
χ
χ
π
∫∫
=
~~
8
1
2
&&
. (18)
Ihkdhevdm ihe_
t
E
&
g_ij_ju\gh \ iehkdhklb
hz
=
fh`gh \aylv _]h i j _^_evgh_
agZq_gb_dZdkhklhjhguh[eZklblZdbkhklhjhguh[eZklbkfjbkIh^klZ\eyy
\Zfieblm^mNmjv_ihey
t
E
&
\\b^_ihemqbf
yx
dd
hctgi
J
hctgi
Jk
k
z
P
χ
χ
γγγε
γγ
γγ
µ
γ
π
∫∫
+
=
221
2
21
12
2
2
2
2
0
~
~
8
(19)
]^_
=
t
kJJ
&
&
,
~
~
,
=
t
kJJ
&
&
,
~
~
.
>_ckl\bl_evgmx qZklv dhfie_dkghc \oh^ghc fhsghklb Zgl_ggu \ hlkmlkl\b_
hfbq_kdbo ihl_jv khklZ\ey_l baemq_gb_ \ k\h[h^gh_ ijhkljZgkl\h b \ha[m`^_gb_
ih\_joghklguo\heg\keh_^bwe_dljbdZgZwdjZg_
SR
PPP
+=
Re . (20)
              Dhfie_dkgZyfhsghklvbaemq_gbyfbdjhihehkdh\hcZgl_ggu


         Kj_^gyy ih \j_f_gb dhfie_dkgZy fhsghklv baemq_gby fbdjhihehkdh\hc
Zgl_gguhij_^_ey_lky\ujZ`_gb_f
                                                          1 & &∗
                                                          2 V∫
                                            P=−                E j dV     ,                           (16)

                                                                                   &
]^_ V      - h[eZklv \ dhlhjhc khkj_^hlhq_gu lhdb k h[t_fghc iehlghklvx j .
Ij_^iheZ]Zy qlh lhd l_q_l lhevdh ih ih\_joghklb [_kdhg_qgh lhgdbo baemqZl_e_c b
                                       &
bf__l ih\_joghklgmx iehlghklv J   i_j_c^_f hl h[t_fgh]h d ih\_joghklghfm
bgl_]jZem
                                                  1        & &
                                         P=−          ∫    Et J ∗ d S ,                               (17)
                                                  2   S

]^_ S      - qZklv iehkdhklb z = h   aZgylZy fbdjhihehkdh\ufb baemqZl_eyfb <
jZkkfZljb\Z_fhf kemqZ_ lhd i_j_^Z_l k\hx wg_j]bx ihex ihwlhfm j_ZevgZy qZklv
ih\_joghklgh]h \   b h[t_fgh]h \   bgl_]jZeh\ hljbpZl_evgZ AgZd fbgmk \
ijZ\hc qZklb   b   h[_ki_qb\Z_l \uiheg_gb_ mkeh\by Re P > 0   I_j_oh^y d
ki_dljZevgufZfieblm^Zfihemqbf
                                                           ∞    ~& ~&
                                              1
                                     P=−                  ∫ ∫   E t J ∗ dχ x dχ y .                   (18)
                                            8π 2          −∞
                 &
Ihkdhevdm ihe_ E t  g_ij_ju\gh \ iehkdhklb z = h   fh`gh \aylv _]h ij_^_evgh_
agZq_gb_dZdkhklhjhguh[eZklblZdbkhklhjhguh[eZklb kfjbk Ih^klZ\eyy
                             &
\  Zfieblm^mNmjv_ihey E t \\b^_  ihemqbf

                                                                                         
                               ∞                  k 2 ~⊥ 2
                                                       J            γ   γ
                                                                            ~ 2
                                                                            J ′′          
                        z0                                           1   2                dχ dχ
           P=−                 ∫    ∫
                     8 π k −∞  i γ 2 ctg γ h − γ
                           2
                                                              +
                                                                i ε γ 1 ctg γ 2 h − γ 2    x     y   (19)
                                                        2  1                             
                                          µ                                              
                ~& &                    ~& &
           =  J , k t⊥  , J ′′ =  J , k t′′ .
     ~                        ~
]^_ J ⊥
                                               
         >_ckl\bl_evgmx qZklv dhfie_dkghc \oh^ghc fhsghklb Zgl_ggu \ hlkmlkl\b_
hfbq_kdbo ihl_jv khklZ\ey_l baemq_gb_ \ k\h[h^gh_ ijhkljZgkl\h b \ha[m`^_gb_
ih\_joghklguo\heg\keh_^bwe_dljbdZgZwdjZg_
                                               Re P = PR + PS .                                       (20)