Приближение заданного распределения поверхностного тока для расчета прямоугольных микрополосковых антенн. Нечаев Ю.Б. - 5 стр.

UptoLike

Составители: 

12
2
2
~~
~
γγ
µ
γ
χ
χ
=
hctgi
JJ
H
yyxx
z
. (11)
H[hagZqbf
t
k
&
ihi_j_qgmx d hkb
OZ
khklZ\eyxsmx \hegh\h]h \_dlhjZ
yyxxt
eek
χ
χ
&&
&
+=
Khhl\_lkl\mxsbc _^bgbqguc \_d lhj h[hagZqbf
t
k
&
:
r
y
y
r
x
xt
eek
χ
χ
χ
χ
&&
&
+=
b \\_^_f _^bgbqguc \_dlhj
t
k
hij_^_eb\ _]h
ke_^mxsbfh[jZahf
[]
ztt
ekk
&
&&
,
=
.
Kmq_lhf\\_^_gguoh[hagZq_gbcnhjfmeufh`ghij_^klZ\blv\\b^_
()
hctgik
kJz
E
rt
z
212
20
2
,
~
~
γγεγ
γ
χ
=
&
&
, (12)
hctgi
kJ
H
rt
z
2
2
1
2
,
~
~
γ
µ
γ
γ
χ
=
&
&
. (13)
Bkihevamy nhjfmeubihemqbf ki_dljZevgu_ Zfieblm^u ihi_j_qguo
hlghkbl_evghhkb
OZ
khklZ\eyxsbowe_dljhfZ]gblgh]hihey
[10]:
()
221
021
12
2
0
2
,
~
,
~
~
γγγε
γγ
γγ
µ
γ
=
hctgik
zkJ
hctgi
zkkJk
E
ttt
t
&
&
&&
&
&
, (14)
221
2
12
2
1
2
,
~
,
~
~
γγγε
γε
γγ
µ
γ
γ
=
hctgi
kkJ
hctgi
kkJ
H
tttt
t
&&
&
&&
&
&
. (15)
LZdbf h[jZahf \ujZ`_gby 
-
 ^Zxl \hafh`ghklv ih ki_dlj Zevghc
Zfieblm^_ iehlghklb ih\_joghklgh]h lhdZ gZ we_f_glZo fbdjhihehkdh\hc Zgl_ggu
gZclb ki_dljZevgu_ Zfieblm^u ihey baemq_gby We_dljhfZ]gblgh_ ihe_ \
fZ]gblh^bwe_dljbq_kdhf keh_ fh`gh gZclb bkihevamy khhlghr_gby f_`^m
ki_dljZevgufbZfieblm^Zfb\h[eZklyobkfjbk
                                             ~         ~
                                   ~2     χx Jx − χy Jy
                                   Hz =                      .                                         (11)
                                          γ2
                                        i    ctg γ 2 h − γ 1
                                           µ
                         &
         H[hagZqbf k t  ihi_j_qgmx d hkb OZ khklZ\eyxsmx \hegh\h]h \_dlhjZ 
& &             &                                                                 &
k t = e x χ x + e y χ y   Khhl\_lkl\mxsbc _^bgbqguc \_dlhj h[hagZqbf k t′′

  & & χ           & χy                                         &
                                                                                 ⊥
: k t′′ = e x x + e y       b \\_^_f _^bgbqguc \_dlhj k                             hij_^_eb\ _]h
             χr       χr
                                                                             t


ke_^mxsbfh[jZahf
                                            &
                                                    [
                                                   & &
                                            k t⊥ = k t′′ , e z   ].
Kmq_lhf\\_^_gguoh[hagZq_gbcnhjfmeu    fh`ghij_^klZ\blv\\b^_
                                         ~& &
                                  z 0  J , k t′′ χ r γ 2
                         ~                        
                        E z2 =                               ,                                         (12)
                               k (γ 2 − i ε γ 1 ctg γ 2 h )
                                             ~& &
                                           J , k ⊥  χ
                                ~                t
                                                       r
                                H z2 =                        .                                       (13)
                                               γ2
                                       γ1 − i       ctg γ 2 h
                                                µ
Bkihevamy nhjfmeu   b   ihemqbf ki_dljZevgu_ Zfieblm^u ihi_j_qguo
hlghkbl_evghhkbOZkhklZ\eyxsbowe_dljhfZ]gblgh]hihey[10]:
                          ~& &       &                      ~& &
                                   ⊥           γ 1 γ 2  J , k t′′ z 0
               ~& 2 k  J , k t′′ k t z 0                         
               Et =                          −
                     i
                       γ2
                            ctg γ 2 h − γ 1
                                                          (
                                               k i ε γ 1 ctg γ 2 h − γ 2             )   ,            (14)

                       µ
                                     ~& &       &                 ~& & &
                              γ    J , k ⊥  k ′′     ε γ    J , k ′′ k ⊥
                      ~&        1
                                         t
                                               t            2
                                                                      t
                                                                           t
                      H t2 =                         −                               .                (15)
                              γ                        i ε γ 1 ctg γ 2 h − γ 2
                             i 2 ctg γ 2 h − γ 1
                                µ
       LZdbf h[jZahf \ujZ`_gby   -   ^Zxl \hafh`ghklv ih ki_dljZevghc
Zfieblm^_ iehlghklb ih\_joghklgh]h lhdZ gZ we_f_glZo fbdjhihehkdh\hc Zgl_ggu
gZclb ki_dljZevgu_ Zfieblm^u ihey baemq_gby We_dljhfZ]gblgh_ ihe_ \
fZ]gblh^bwe_dljbq_kdhf keh_ fh`gh gZclb bkihevamy khhlghr_gby f_`^m
ki_dljZevgufbZfieblm^Zfb\h[eZklyob kfjbk