ВУЗ:
Составители:
Рубрика:
A^_kv
R
P
-
kj_^gyy fhsghklv baemq_gby \ k\h[h^gh_ ijhkljZgkl\h
S
P
-
kj_^gyy
fhsghklvmghkbfZyih\_joghklgufb\hegZfb
BaemqZ_fhfm \ k\h[h^gh_ ijhkljZgkl\h ihex khhl\_lkl\m_l lZd gZau\Z_fZy
\b^bfZy h[eZklv ijhkljZgkl\Z>@\ dhlhjhc
22
k
r
<
χ
GZ iehkdhklb
yx
χ
χ
,) –
wlh
djm]
χ
S
jZ^bmkZ
k
kp_gljhf\gZqZe_dhhj^bgZlLZdbfh[jZahffhsghklvbaemq_gby
\k\h[h^gh_ijhkljZgkl\hhij_^_ey_lkybgl_]jZehfih\b^bfhch[eZklb
χ
()
,,Re
15
yxyx
S
R
ddQ
k
P
χ
χ
χ
χ
π
χ
∫
−=
(21)
]^_ h[hagZq_gb_
(
)
yx
Q
χ
χ
,
bkihevah\Zgh ^ey ih^ugl_]jZevghc nmgdpbb \
I_j_c^_f \ d bgl_]jbjh\Zgbx \ iheyjghc Z aZl_f \ kn_jbq_kdhc kbkl_f_
dhhj^bgZl
∫∫∫∫∫
==
2
0
2
0
2
0
2
0
cossin
πππ
ϕθθθϕ
χ
χ
χ
χ
χ
ddkQddQddQ
r
k
ryx
S
,
]^_m]he
θ
hlkqblu\Z_lkyhlhkb
z
O
χ
Zm]he
ϕ
-
\iehkdhklb
yx
O
χ
χ
hlhkb
x
O
χ
<
j_amevlZl_ihemqZ_f
R
P
\\b^_^Ze__iheZ]Z_lky
1
=
µ
) [10]
()
ϕθθϕθ
ππ
ddfP
R
sin,
2
0
2
0
∫∫
=
, (22)
]^_
()
()
()
()
θ
θεθεθε
θε
θεθεθ
π
ϕθ
2
22222
2
2
2222
2
2
cos
sincossin
sin
~
sinsincos
~
15
,
−+−
−
′′
+
+
−−+
=
⊥
hkctg
J
hkctg
J
k
f
- (23)
^bZ]jZffZgZijZ\e_gghklbfbdjhihehkdh\hcZgl_gguihfhsghklb
ϕϕϕϕ
sin
~
cos
~~
,cos
~
sin
~~
yxyx
JJJJJJ
+=
′′
−=
⊥
.
Dhwnnbpb_glgZijZ\e_ggh]h^_ckl\byZgl_ggujZkkqblu\Z_lkyihnhjfme_
()
R
P
f
D
max
,
4
ϕθ
π
=
. (24)
A^_kv PR -kj_^gyy fhsghklv baemq_gby \ k\h[h^gh_ ijhkljZgkl\h PS - kj_^gyy
fhsghklvmghkbfZyih\_joghklgufb\hegZfb
BaemqZ_fhfm \ k\h[h^gh_ ijhkljZgkl\h ihex khhl\_lkl\m_l lZd gZau\Z_fZy
\b^bfZy h[eZklv ijhkljZgkl\Z >@ \ dhlhjhc χ r2 < k 2 GZ iehkdhklb χ x , χ y ) – wlh
djm] S χ jZ^bmkZ k kp_gljhf\gZqZe_dhhj^bgZlLZdbfh[jZahffhsghklvbaemq_gby
\k\h[h^gh_ijhkljZgkl\hhij_^_ey_lkybgl_]jZehfih\b^bfhch[eZklb χ
∫ Q (χ x , χ y ) dχ x dχ y ,
15
PR = − Re (21)
πk Sχ
( )
]^_ h[hagZq_gb_ Q χ x , χ y bkihevah\Zgh ^ey ih^ugl_]jZevghc nmgdpbb \
I_j_c^_f \ d bgl_]jbjh\Zgbx \ iheyjghc Z aZl_f \ kn_jbq_kdhc kbkl_f_
dhhj^bgZl
k 2π π 2 2π
∫ Q dχ x dχ y = ∫ ∫ Q χ r d χ r dϕ = ∫ ∫ Qk sin θ cos θ dθ dϕ ,
2
Sχ 0 0 0 0
]^_m]he θ hlkqblu\Z_lkyhlhkb Oχ z Zm]he ϕ -\iehkdhklb χ x Oχ y hlhkb Oχ x <
j_amevlZl_ihemqZ_f PR \\b^_ ^Ze__iheZ]Z_lky µ = 1 ) [10]
π 2 2π
PR = ∫ ∫ f (θ , ϕ ) sin θ dθ dϕ , (22)
0 0
]^_
~ 2
15 k 2 J⊥
f (θ , ϕ ) = +
(
)
π cos 2 θ + ε − sin 2 θ ctg 2 k h ε − sin 2 θ
- (23)
~ 2
J ′′ ε − sin 2 θ ( )
+ cos θ
2
( )
ε − sin 2 θ + ε 2 cos 2 θ ctg 2 k h ε − sin 2 θ
^bZ]jZffZgZijZ\e_gghklbfbdjhihehkdh\hcZgl_gguihfhsghklb
~ ~ ~ ~ ~ ~
J ⊥ = J x sin ϕ − J y cos ϕ , J ′′ = J x cos ϕ + J y sin ϕ .
Dhwnnbpb_glgZijZ\e_ggh]h^_ckl\byZgl_ggujZkkqblu\Z_lkyihnhjfme_
f (θ , ϕ )max
D = 4π . (24)
PR
Страницы
- « первая
- ‹ предыдущая
- …
- 5
- 6
- 7
- 8
- 9
- …
- следующая ›
- последняя »
