Приближение заданного распределения поверхностного тока для расчета прямоугольных микрополосковых антенн. Нечаев Ю.Б. - 9 стр.

UptoLike

Составители: 

()
()
2
0
1
1
2
1
1
+=
ε
ε
χ
hk
. (28)
AZf_gbf\ bgl_]jbjh\Zgb_ih
yx
χ
χ
,
bgl_]jbjh\Zgb_fihi_j_f_gguf
r
χ
b
ϕ
m]he
ϕ
hlkqblu\Z_lkyhlhkb
x
O
χ
iehkdhklb
(
)
yx
χ
χ
,
\ij_^_eZo
<<
r
0 ,
πϕ
20 <<
k we_f_glhf iehsZ^b
ϕ
χ
χ
dd
rr
< khhl\_lkl\bb k ijbgpbihf
ij_^_evgh]h ih]ehs_gby dhglmj ih dhlhjhfm ijh\h^blky bgl_]jbjh\Zgb_ ih
r
χ
,
h[oh^blk\_jomihexku\lhqdZo
gr
χ
(
max
...,3,2,1 gg =
gZhlj_ad_\_s_kl\_gghchkb
µε
kk
r
<deZ^ \ bgl_]jZe \uq_lh\ \ ihexkZo khhl\_lkl\m_l fhsghklb
baemq_gbyih\_joghklguo\hegFhsghklvbaemq_gbyih\_joghklguo\hegLF
-
lbiZ\
qZklghklb hkgh\ghc \hegu jZkijhkljZgyxs_cky [_a aZlmoZgby ^Z`_ \ lhgdhc
ih^eh`d_hij_^_ey_lky\ujZ`_gb_f
[10]
(
)
()
()
.,
~
1
1
1
1
1
1
15
2
2
0
1
2
22
2
2
2
2
2
max
ϕϕ
ε
ε
ε
ε
ε
ε
π
dJ
hk
kP
pr
p
p
p
p
p
p
p
p
S
×
×
++
+
=
=
(29)
?keb ij_g_[jZqv hfbq_kdbfb ihl_jyfb wg_j]bb DI> fbdjhihehkdh\hc
Zgl_gguhij_^_ey_lkyihnhjfme_
SR
R
PP
P
+
=
η
, (30)
Zdhwnnbpb_glmkbe_gby
η
DG
=
. (31)
Ijyfhm]hevgucfbdjhihehkdh\ucbaemqZl_evgZj_ahgZgkghcqZklhl_
JZkkfhljbfijyfhm]hevgucfbdjhihehkdh\ucbaemqZl_ev^ebghc
l
rbjbghc
w
<\_^_f ehdZevgmxk\yaZggmx k baemqZl_e_f ijyfhm]hevgmx kbkl_fmdhhj^bgZl
yox
jbkLhqdZ
o
e_`bl\iehkdhklb
yox
bbf__ldhhj^bgZlu
()
00
,
yx
.
                                                       1  k h (ε − 1)
                                                                             2
                                      χ 1(0 ) = 1 +                                  .                   (28)
                                                       2     ε      
                                                                      
       AZf_gbf\  bgl_]jbjh\Zgb_ih χ x , χ y bgl_]jbjh\Zgb_fihi_j_f_gguf χ r

                                                                             (           )
b ϕ  m]he ϕ hlkqblu\Z_lkyhlhkb O χ x iehkdhklb χ x , χ y  \ij_^_eZo 0 < χ r < ∞ ,

0 < ϕ < 2 π  k we_f_glhf iehsZ^b χ r dχ r dϕ   < khhl\_lkl\bb k ijbgpbihf
ij_^_evgh]h ih]ehs_gby dhglmj ih dhlhjhfm ijh\h^blky bgl_]jbjh\Zgb_ ih χ r ,
h[oh^blk\_jomihexku\lhqdZo χ r g ( g = 1, 2, 3, ...g max gZhlj_ad_\_s_kl\_gghchkb

k ≤ χ r ≤ k ε µ    fbdjhihehkdh\hc
Zgl_gguhij_^_ey_lkyihnhjfme_
                                                         PR
                                                  η=                 ,                                   (30)
                                                       PR + PS
Zdhwnnbpb_glmkbe_gby–
                                                      G = Dη             .                               (31)


      Ijyfhm]hevgucfbdjhihehkdh\ucbaemqZl_evgZj_ahgZgkghcqZklhl_


       JZkkfhljbfijyfhm]hevgucfbdjhihehkdh\ucbaemqZl_ev^ebghc l rbjbghc
w   <\_^_f ehdZevgmx k\yaZggmx k baemqZl_e_f ijyfhm]hevgmx kbkl_fm dhhj^bgZl
x ′ o ′ y ′  jbk LhqdZ o ′ e_`bl\iehkdhklb x o y bbf__ldhhj^bgZlu ( x 0 , y 0 ) .